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One of the basic results of elementary number theory is Fermat’s two-square theorem.

Theorem 1 (Fermat, 1640). An odd prime p is a sum of two squares if and only if p ≡
1 mod 4. Furthermore, a representation of a prime as a2 + b2 in Z is unique up to the order
and signs of a and b.

For example, 5 = 1 + 4 = 12 + 22, and the only way we can write 5 as a2 + b2 is by letting
a and b be 1 and 2 up to order and sign (5 = (−1)2 + 22 = (−2)2 + (−1)2, etc.).

An odd prime that is a sum of two squares has to be 1 mod 4 since the only squares
mod 4 are 0 and 1, so they can’t sum to 3 mod 4. To prove, conversely, that any prime
p ≡ 1 mod 4 is a sum of two squares, there are several methods available: descent [6,
Chap. 26] (this was Fermat’s own approach, according to [7, p. 67]), factorization of p
in the Gaussian integers [2, p. 120], Jacobi sums [2, p. 95], the pigeonhole principle [1,
pp. 264–265], continued fractions [5, pp. 132–133], quadratic forms [3, pp. 163–164], and
Minkowski’s convex body theorem [3, pp. 454–455]. One of the virtues of the proof using
Gaussian integers is that, thanks to unique factorization in Z[i], along with existence of a
sum of two squares representation for p we obtain the uniqueness of this representation (up
to order and sign of the terms being squares) from the uniqueness in unique factorization.
This uniqueness can also be proved using simple congruence and divisibility arguments [1,
pp. 265–266].

The question that motivated the present note is whether or not there is a proof of the
uniqueness part of Theorem 1 using lattice methods, in the spirit of Minkowski’s proof of
the existence part of Theorem 1. We will give such a proof, as suggested by D. Clausen.
Let p be an odd prime and assume p = a2 + b2 for some integers a and b. We want to show
this is the only representation of p as a sum of two squares up to the order and signs of a
and b.

Since a2 + b2 ≡ 0 mod p, both a and b are nonzero modulo p, so dividing the congruence
by b shows there is a solution to k2 + 1 ≡ 0 mod p. For x and y in Z, x2 + y2 ≡ 0 mod p if
and only if y2 ≡ −x2 ≡ (kx)2 mod p, which is equivalent to y ≡ ±kx mod p. Set

L = {(x, y) ∈ Z2 : y ≡ kx mod p} = Z

(
1

k

)
+ Z

(
0

p

)
,

which is a lattice in R2 with fundamental parallelogram having area |det( 1 0
k p )| = p. (This

lattice appears in the existence part of the proof of Theorem 1 when using Minkowski’s
theorem.) Let C be the circle {(x, y) ∈ R2 : x2 + y2 = p}. The uniqueness in Theorem 1
amounts to saying C contains only 8 integral points:

(1) (a, b), (a,−b), (−a, b), (−a,−b), (b, a), (b,−a), (−b, a), (−b,−a).

None of these points can be equal, since otherwise b = ±a and then a2 + b2 = 2a2 is even,
but a2 + b2 = p is an odd prime.
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For each integral point (x, y) on C, one of (x, y) or (x,−y) is in the lattice L since
x2 + y2 = p ⇒ x2 + y2 ≡ 0 mod p ⇒ y ≡ ±kx mod p, and the points (x, y) and (x,−y)
can’t both be in L since then −y ≡ y mod p, which implies y ≡ 0 mod p (because p is
odd), but that contradicts x2 + y2 = p. Therefore the total number of integral solutions
to x2 + y2 = p is 2|C ∩ L|, so showing C contains exactly 8 integral points is the same as
showing |C ∩ L| = 4.

When p = a2+b2 with integers a and b, we have b ≡ ka mod p or b ≡ −ka mod p. Change

the sign on b if necessary to make b ≡ ka mod p , so (a, b) ∈ C ∩L. From b ≡ ka mod p we

get a ≡ k(−b) mod p by multiplying both sides of the congruence by k, so four integral points
in C∩L are (a, b), (−a,−b), (−b, a), and (b,−a). (The other four points on C in (1) are not

in L, but are in the alternate lattice L′ = {(x, y) ∈ R2 : y ≡ −kx mod p} = Z
(

1
−k

)
+ Z

(
0
p

)
.)

If there is any additional integral point on C then we will get 4 such points by swapping
coordinates and signs, and none of these points will be ones we had before (why?), so |C∩L|
is a multiple of 4.

We will now count |C ∩ L| in a second way, using areas. Construct the convex polygon
having as its vertices the points in C ∩L. This polygon is contained in and on the circle C,
so its area is less than the area of C, which is πp. The area of the polygon can be described
by an exact formula in terms of |C ∩ L| using Pick’s theorem:

Theorem 2 (G. Pick, 1899). Let Λ be a lattice in R2 and let Π be a polygon with vertices
on Λ. If Π is convex then the area of Π is (I +B/2− 1)∆ where I is the number of points
in Λ that are in the interior of Π, B is the number of points in Λ on the boundary of Π,
and ∆ is the area of a fundamental parallelogram for Λ.

Pick’s theorem is often stated for polygons with vertices on the standard integral lattice
Z2, but the formulation of the theorem for more general lattices will be convenient for us.
This more general case can be reduced by linear algebra to the standard lattice case of Z2.
A proof of Pick’s theorem is in [4].

The only point of L inside C is the origin since (from the definition of L) every point in
L has squared distance from the origin x2 + y2 equal to a multiple of p, so for the convex
polygon with vertex set C ∩L we have I = 1. Since B = |C ∩L| and ∆ = p, the area of the
convex polygon is (1 + |C ∩ L|/2 − 1)p = |C ∩ L|p/2 by Pick’s theorem. An upper bound
on the area of the polygon is πp, so |C ∩ L|p/2 < πp, and thus |C ∩ L| < 2π ≈ 6.28. The
number |C ∩L| is a multiple of 4, so |C ∩L| must be 4 and that’s what we wanted to show.
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Boston, 1984.


	References

