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In algebra, the name “Gauss’s Lemma” is used to describe any of a circle of related results
about polynomials with integral coefficients. Here are three.

The first result, which can be found in [1, p. 528], says that a factorization in Q[T ] of a
polynomial in Z[T ] can be adjusted to be a factorization in Z[T ] just by scaling the factors.

Theorem 1. If f(T ) ∈ Z[T ] is nonzero and f(T ) = g(T )h(T ) in Q[T ] then f(T ) =
G(T )H(T ) where G(T ) and H(T ) are in Z[T ], G is a scalar multiple of g in Q[T ] and H
is a scalar multiple of h in Q[T ].

Example 2. Let f(T ) = T 2 − 4. Then f(T ) = (3T − 6)(T/3 − 2/3) is a factorization
in Q[T ]. Multiplying the first factor by 1/3 and the second factor by 3, we get the more
familiar factorization f(T ) = (T − 2)(T + 2) in Z[T ].

The second result, which is in [3, p. 40], is about primitive polynomials. A polynomial in
Z[T ] is called primitive when its coefficients are relatively prime when considered together.
For example, 6T 2 + 10T + 15 is primitive; even though each pair of coefficients is not
relatively prime, the triple of coefficients (6, 10, 15) is relatively prime and that makes the
polynomial primitive.

Theorem 3. If f(T ) and g(T ) are primitive in Z[T ] then f(T )g(T ) is primitive.

The third result was essentially stated by Gauss himself [2, Article 42].

Theorem 4. If f(T ) is monic in Z[T ] and f(T ) = g(T )h(T ) in Q[T ] where g(T ) and h(T )
are monic, then g(T ) and h(T ) are in Z[T ].

We will prove these theorems with an extension of the p-adic absolute value from Q to
Q[T ].

Definition 5. For a polynomial f(T ) =
∑

anT
n in Q[T ] and a prime p, define the p-adic

Gauss norm of f to be |f |p = maxn |an|p.
In this definition we are not specifying the degree of the polynomial f , but it doesn’t

matter since the maximum in the definition of |f |p is unaffected by additional coefficients
that are 0. If f(T ) = c is constant then |f |p = |c|p, so | · |p on Q[T ] restricts to the p-adic
absolute value on Q.

Example 6. If f(T ) = 6T 2 − (5/3)T + 4/7, we have |f |2 = max(1/2, 1, 1/4) = 1, |f |3 =
max(1/3, 3, 1) = 3, |f |5 = max(1, 1/5, 1) = 1, |f |7 = max(1, 1, 7) = 7, and |f |p = 1 for all
p > 7. Note

∏
p |f |p = 21 and 21f(T ) = 126T 2− 35T + 12 is a scalar multiple of f(T ) with

integral coefficients that is primitive. This idea will be used later.

To get used to the meaning of the p-adic Gauss norms as p varies, we show how to use
them to describe being primitive in Z[T ].

Theorem 7. A polynomial f(T ) in Q[T ] is primitive in Z[T ] if and only if |f |p = 1 for all
primes p.
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Proof. If f is primitive in Z[T ] then for each prime p we have |f |p = 1 because all the
coefficients of f are integers (so |f |p ≤ 1) and at least one of its coefficients is not divisible
by p (so |f |p = 1).

Conversely, assume for each prime p that |f |p = 1. Then each coefficient of f has p-adic
absolute value at most 1 for all p, so each coefficient of f is a p-adic integer for all p. A
rational number that is in Zp for all p is in Z, so f(T ) ∈ Z[T ]. If f(T ) were not primitive
then its coefficients would share a common prime factor p and then |f |p < 1 for that p.
Therefore the assumption that |f |p = 1 for all p implies f is primitive. �

Clearly |f |p ≥ 0 with equality if and only if f = 0, and easily |f + g|p ≤ max(|f |p, |g|p)
and |fg|p ≤ |f |p|g|p by the formulas for adding and multiplying polynomials together with
the strong triangle inequality. Perhaps surprisingly, | · |p is actually multiplicative on Q[T ].

Theorem 8. For f and g in Q[T ], |fg|p = |f |p|g|p.

Proof. If f = 0 or g = 0 then the equality is obvious, so we can assume f and g each have
some nonzero coefficients: |f |p > 0 and |g|p > 0.

Write f(T ) =
∑

amTm and g(T ) =
∑

bnT
n. (We don’t specify where the polynomials

stop; coefficients equal 0 in large degrees.) Since |fg|p ≤ |f |p|g|p, to prove |fg|p = |f |p|g|p
we seek a coefficient in fg with absolute value |f |p|g|p. We will do this in two ways.

Method 1: Focus on where coefficients of maximal absolute value in f and g first occur.
Set |f |p = |aM |p with M minimal and |g|p = |bN |p with N minimal: |am|p < |aM |p for

m < M and |bn|p < |bN |p for n < N . (If either M or N is 0 then such an inequality is an
empty condition.) We seek a coefficient in fg with absolute value |f |p|g|p and will find it
in degree M + N .

The coefficient of TM+N in fg is
∑M+N

m=0 ambM+N−m. The term in this sum at m = M
is aMbN . For 0 ≤ m < M ,

|ambM+N−m|p = |am|p|bM+N−m|p ≤ |am|p|g|p = |am|p|bN |p < |aM |p|bN |p.

For M < m ≤M + N we have 0 ≤M + N −m < N , so

|ambM+N−m|p = |am|p|bM+N−m|p ≤ |f |p|bM+N−m|p = |aM |p|bM+N−m|p < |aM |p|bN |p.

Thus |ambM+N−m|p < |aMbN |p for 0 ≤ m ≤M +N with m 6= M , so by the strong triangle
inequality we get ∣∣∣∣∣

M+N∑
m=0

ambM+N−m

∣∣∣∣∣
p

= |aMbN |p = |aM |p|bN |p = |f |p|g|p.

Method 2: Focus on where coefficients of maximal absolute value in f and g last occur.
Now set |f |p = |aM |p with M maximal and |g|p = |bN |p with N maximal: |am|p < |aM |p

for m > M and |bn|p < |bN |p for n > N . We’ll see that a coefficient in fg of p-adic absolute
value |f |p|g|p occurs in degree M + N .

The coefficient of TM+N in fg is
∑M+N

m=0 ambM+N−m and the term in this sum at m = M
is aMbN . If 0 ≤ m < M then M + N −m > N , so

|ambM+N−m|p = |am|p|bM+N−m|p ≤ |f |p|bM+N−n|p = |aM |p|bM+N−n|p < |aM |p|bN |p.

For M < m ≤M + N ,

|ambM+N−m|p = |am|p|bM+N−m|p ≤ |am|p|g|p = |am|p|bN |p < |aM |p|bN |p.
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Thus |ambM+N−m|p < |aMbN |p for 0 ≤ m ≤M +N with m 6= M , so by the strong triangle
inequality we get ∣∣∣∣∣

M+N∑
m=0

ambM+N−m

∣∣∣∣∣
p

= |aMbN |p = |aM |p|bN |p = |f |p|g|p.

�

The proof of Theorem 8 did not need the coefficients to be rational: Definition 5 for the
prime p makes sense on Qp[T ], not just Q[T ] (where p can vary), and Theorem 8 holds on
Qp[T ] by the same proof. While we only need one of the methods in the proof of Theorem 8,
there are generalizations of Theorem 8 from polynomials to different types of p-adic power
series – the formal power series Zp[[T ]] and the restricted power series Qp〈T 〉 – where one
method works and the other doesn’t, so both are worthwhile. Gauss himself used the first
method (on polynomials).

Remark 9. We can extend the ordinary absolute value on Q to Q[T ] in the same way as we
did | · |p and the ordinary triangle inequality |f + g| ≤ |f |+ |g| trivially holds, but behavior
under multiplication is bad: |T + 1| = 1 but |(T + 1)n| = |Tn + nTn−1 + · · · + 1| ≥ n, so
|(T + 1)n| → ∞ as n→∞.

To prove Theorem 1 we use the following result that shows how to systematically scale a
polynomial in Q[T ] to a primitive polynomial in Z[T ] using all the Gauss norms on Q[T ].

Lemma 10. For f(T ) ∈ Q[T ] set A =
∏

p |f |p. Then Af(T ) is in Z[T ] and is primitive.

The product over all p defining A makes sense since |f |p = 1 for all but finitely many p.

Proof. For each integer n, the fact that |pn|p = 1/pn and |qn|p = 1 for primes q 6= p tells us
that |A|p = ||f |p|p = 1/|f |p . Thus |Af |p = |A|p|f |p = 1 for all p, so Af(T ) is primitive in
Z[T ] by Theorem 7. �

Proof of Theorem 1. Let A =
∏

p |f |p, B =
∏

p |g|p, and C =
∏

p |h|p. Since |f |p =

|g|p|h|p for all p, taking the product of both sides over all p implies A = BC.
By Lemma 10, the polynomials F (T ) = Af(T ), G(T ) = Bg(T ), and H(T ) = Ch(T )

are all in Z[T ]. From f = gh we get F (T )/A = (G(T )/B)(H(T )/C) = G(T )H(T )/BC =
G(T )H(T )/A, so F (T ) = G(T )H(T ). Thus

f(T ) =
1

A
F (T ) =

1

A
G(T )H(T ).

The coefficients of f are integers, so 1/|f |p ∈ Z for all p and thus 1/A ∈ Z. Therefore
(1/A)G(T ) ∈ Z[T ], so renaming (1/A)G(T ) as G(T ) we are done.

Proof of Theorem 3. By (⇒) in Theorem 7, |f |p = 1 and |g|p = 1 for each prime p.
Thus |fg|p = |f |p|g|p = 1 for all p, so fg is primitive by (⇐) in Theorem 7.

Proof of Theorem 4. A monic in Z[T ] is primitive, so |f |p = 1 for all p. Therefore
|g|p|h|p = 1. Since g and h are monic, |g|p ≥ 1 and |h|p ≥ 1, so the equation |g|p|h|p = 1
implies |g|p = 1 and |h|p = 1 for all p. Thus g and h are in Z[T ] by (⇐) in Theorem 7.
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