
SIMPLICITY OF PSLn(F )

KEITH CONRAD

1. Introduction

For a field F and integer n ≥ 2, the projective special linear group PSLn(F ) is the quotient
group of SLn(F ) by its center: PSLn(F ) = SLn(F )/Z(SLn(F )). In 1831, Galois claimed
that PSL2(Fp) is a simple group for all primes p > 3, although he didn’t give a proof. He
had to exclude p = 2 and p = 3 since PSL2(F2) ∼= S3 and PSL2(F3) ∼= A4, and these groups
are not simple. It turns out that PSLn(F ) is a simple group for all n ≥ 2 and all fields F
except when n = 2 and F = F2 and F3. The proof of this was developed over essentially
30 years, from 1870 to 1901:

• Jordan [4] for n ≥ 2 and F = Fp except (n, p) = (2, 2) and (2,3).
• Moore [5] for n = 2 and F all finite fields of size greater than 3.
• Dickson for n > 2 and F finite [1], and for n ≥ 2 and F infinite [2].

We will prove simplicity of PSLn(F ) using a criterion of Iwasawa [3] from 1941 that
relates simple quotient groups and doubly transitive group actions. This criterion will be
developed in Section 2, and applied to PSL2(F ) in Section 3 and PSLn(F ) for n > 2 in
Section 4.

2. Doubly transitive actions and Iwasawa’s criterion

An action of a group G on a set X is called transitive when, given two distinct x and
y in X, there is a g ∈ G such that g(x) = y. We call the action doubly transitive if each
pair of distinct points in X can be carried to every other pair of distinct points in X by
some element of G. That is, given two pairs (x1, x2) and (y1, y2) in X ×X, where x1 6= x2
and y1 6= y2, there is a g ∈ G such that g(x1) = y1 and g(x2) = y2. Although the xi’s are
distinct and the yj ’s are distinct, we do allow an xi to be a yj . For instance, if x, x′, x′′ are
three distinct elements of X then there is a g ∈ G such that g(x) = x and g(x′) = x′′. (Here
x1 = y1 = x and x2 = x′, y2 = x′′.) Necessarily a doubly transitive action requires |X| ≥ 2.

Example 2.1. The action of A4 on {1, 2, 3, 4} is doubly transitive.

Example 2.2. The action of D4 on {1, 2, 3, 4}, as vertices of a square, is not doubly
transitive since a pair of adjacent vertices can’t be sent to a pair of nonadjacent vertices.

Example 2.3. For all fields F , the group Aff(F ) acts on F by ( a b0 1 )x = ax + b and this
action is doubly transitive.

Example 2.4. For all fields F , the group GL2(F ) acts on F 2 − {
(
0
0

)
} by the usual way

matrices act on vectors, but this action is not doubly transitive since linearly dependent
vectors can’t be sent to linearly independent vectors by a matrix.

Theorem 2.5. If G acts doubly transitively on X then the stabilizer subgroup of each point
in X is a maximal subgroup of G.
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A maximal subgroup is a proper subgroup contained in no other proper subgroup.

Proof. Pick x ∈ X and let Hx = Stabx.
Step 1: For each g 6∈ Hx, G = Hx ∪HxgHx.

For g′ ∈ G such that g′ 6∈ Hx, we will show g′ ∈ HxgHx. Both gx and g′x are not x,
so by double transitivity with the pairs (x, gx) and (x, g′x) there is some g′′ ∈ G such that
g′′x = x and g′′(gx) = g′x. The first equation implies g′′ ∈ Hx, so let’s write g′′ as h. Then
h(gx) = g′x, so g′ ∈ hgHx ⊂ HxgHx.

Step 2: Hx is a maximal subgroup of G.
The group Hx is not all of G, since Hx fixes x while G carries x to each element of X

and |X| ≥ 2. Let K be a subgroup of G strictly containing Hx and pick g ∈ K −Hx. By
step 1, G = Hx ∪HxgHx. Both Hx and HxgHx are in K, so G ⊂ K. Thus K = G. �

The converse of Theorem 2.5 is false. If H is a maximal subgroup of G then left multipli-
cation of G on G/H has H as a stabilizer subgroup, but this action is not doubly transitive
if G has odd order because a finite group with a doubly transitive action has even order.

Theorem 2.6. Suppose G acts doubly transitively on a set X. Any normal subgroup NCG
acts on X either trivially or transitively.

Proof. Suppose N does not act trivially: nx 6= x for some x ∈ X and some n 6= 1 in N .
Pick arbitrary y and y′ in X with y 6= y′. By double transitivity, there is g ∈ G such that
gx = y and g(nx) = y′. Then y′ = (gng−1)(gx) = (gng−1)(y) and gng−1 ∈ N , so N acts
transitively on X. �

Example 2.7. The action of A4 on {1, 2, 3, 4} is doubly transitive and the normal subgroup
{(1), (12)(34), (13)(24), (14)(23)}CA4 acts transitively on {1, 2, 3, 4}.

Example 2.8. For a field F , let Aff(F ) act on F by ( a b0 1 )x = ax + b. This is doubly
transitive and the normal subgroup N = {( 1 b

0 1 ) : b ∈ F} acts transitively (by translations)
on F .

Example 2.9. The action of D4 on the 4 vertices of a square is not doubly transitive.
Consistent with Theorem 2.6, the normal subgroup {1, r2} of D4 acts on the vertices neither
trivially nor transitively.

Here is the main group-theoretic result we will use to prove PSLn(F ) is simple.

Theorem 2.10 (Iwasawa). Let G act doubly transitively on a set X. Assume the following:

(1) For some x ∈ X the group Stabx has an abelian normal subgroup whose conjugate
subgroups generate G.

(2) [G,G] = G.

Then G/K is a simple group, where K is the kernel of the action of G on X.

The kernel of an action is the kernel of the homomorphism G → Sym(X); it’s those g
that act like the identity on X.

Proof. To show G/K is simple we will show the only normal subgroups of G lying between
K and G are K and G. Let K ⊂ N ⊂ G with N CG. Let H = Stabx, so H is a maximal
subgroup of G (Theorem 2.5). Since N is normal, NH = {nh : n ∈ N,h ∈ H} is a subgroup
of G, and it contains H, so by maximality either NH = H or NH = G. By Theorem 2.6,
N acts trivially or transitively on X.
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If NH = H then N ⊂ H, so N fixes x. Therefore N does not act transitively on X, so
N must act trivially on X, which implies N ⊂ K. Since K ⊂ N by hypothesis, we have
N = K.

Now suppose NH = G. Let U be the abelian normal subgroup of H in the hypothesis:
its conjugate subgroups generate G. Since U C H, NU C NH = G. Then for g ∈ G,
gUg−1 ⊂ g(NU)g−1 = NU , which shows NU contains all the conjugate subgroups of U .
By hypothesis it follows that NU = G.

Thus G/N = (NU)/N ∼= U/(N ∩ U). Since U is abelian, the isomorphism tells us that
G/N is abelian, so [G,G] ⊂ N . Since G = [G,G] by hypothesis, we have N = G. �

Example 2.11. We can use Theorem 2.10 to show A5 is a simple group. Its natural action
on {1, 2, 3, 4, 5} is doubly transitive. Let x = 5, so Stabx ∼= A4, which has the abelian
normal subgroup

{(1), (12)(34), (13)(24), (14)(23)}.
The A5-conjugates of this subgroup generate A5 since the (2,2)-cycles in A5 are all conjugate
in A5 and they generate A5. The commutator subgroup [A5, A5] contains every (2,2)-cycle:
if a, b, c, d are distinct then

(ab)(cd) = (abc)(abd)(abc)−1(abd)−1.

Therefore [A5, A5] = A5, so A5 is simple.

3. Simplicity of PSL2(F )

Let F be a field. The group SL2(F ) acts on F 2 − {
(
0
0

)
}, but this action is not doubly

transitive since linearly dependent vectors can’t be sent to linearly independent vectors by
a matrix. (We saw this for GL2(F ) in Example 2.4, and the same argument applies for its
subgroup SL2(F ).) Linearly dependent vectors in F 2 lie along the same line through the
origin, so let’s consider the action of SL2(F ) on the linear subspaces of F 2: let A ∈ SL2(F )
send the line L = Fv to the line A(L) = F (Av). (Equivalently, we let SL2(F ) act on P1(F ),
the projective line over F .)

Theorem 3.1. The action of SL2(F ) on the linear subspaces of F 2 is doubly transitive.

Proof. An obvious pair of distinct linear subspaces in F 2 is F
(
1
0

)
and F

(
0
1

)
. It suffices to

show that, given two distinct linear subspaces Fv and Fw of F 2, there is an A ∈ SL2(F )

that sends F
(
1
0

)
to Fv and F

(
0
1

)
to Fw, because we can then use F

(
1
0

)
and F

(
0
1

)
as an

intermediate step to send a pair of distinct linear subspaces to every other pair of distinct
linear subspaces.

Let v =
(
a
c

)
and w =

(
b
d

)
. Since Fv 6= Fw, the vectors v and w are linearly independent,

so D := ad − bc is nonzero. Let A = (
a b/D
c d/D

), which has determinant a(d/D) − (b/D)c =

D/D = 1, so A ∈ SL2(F ). Since A
(
1
0

)
=
(
a
c

)
= v and A

(
0
1

)
=
(b/D
d/D

)
= (1/D)w, A sends

F
(
1
0

)
to Fv and F

(
0
1

)
to F (1/D)w = Fw. �

We will apply Iwasawa’s criterion (Theorem 2.10) to SL2(F ) acting on the set of linear
subspaces of F 2. This action is doubly transitive by Theorem 3.1. It remains to check

• the kernel K of this action is the center of SL2(F ), so SL2(F )/K = PSL2(F ),

• the stabilizer subgroup of
(
1
0

)
contains an abelian normal subgroup whose conjugate

subgroups generate SL2(F ),
• [SL2(F ),SL2(F )] = SL2(F ).



4 KEITH CONRAD

It is only in the third part that we will require |F | > 3. (At some point we need to avoid
F = F2 and F = F3, because PSL2(F2) and PSL2(F3) are not simple.)

Theorem 3.2. The kernel of the action of SL2(F ) on the linear subspaces of F 2 is the
center of SL2(F ).

Proof. A matrix ( a bc d ) ∈ SL2(F ) is in the kernel K of the action when it sends each linear

subspace of F 2 back to itself. If the matrix preserves the lines F
(
1
0

)
and F

(
0
1

)
then c = 0

and b = 0, so ( a bc d ) = ( a 0
0 d ). The determinant is 1, so d = 1/a. If ( a 0

0 1/a ) preserves the

line F
(
1
1

)
then a = 1/a, so a = ±1. This means ( a bc d ) = ±( 1 0

0 1 ). Conversely, the matrices

±( 1 0
0 1 ) both act trivially on the linear subspaces of F 2, so K = {±( 1 0

0 1 )}.
If a matrix ( a bc d ) is in the center of SL2(F ) then it commutes with ( 1 1

0 1 ) and ( 1 0
1 1 ), which

implies a = d and b = c (check!). Therefore ( a bc d ) = ( a 0
0 a ). Since this has determinant 1,

a2 = 1, so a = ±1. Conversely, ±( 1 0
0 1 ) commutes with all matrices. �

Let x = F
(
1
0

)
. Its stabilizer subgroup in SL2(F ) is

StabF(10)
=

{
A ∈ SL2(F ) : A

(
1

0

)
∈ F

(
1

0

)}
=

{(
a b
0 d

)
∈ SL2(F )

}
=

{(
a b
0 1/a

)
: a ∈ F×, b ∈ F

}
.

This subgroup has a normal subgroup

U =

{(
1 ∗
0 1

)}
=

{(
1 λ
0 1

)
: λ ∈ F

}
,

which is abelian since ( 1 λ
0 1 )( 1 µ

0 1 ) = ( 1 λ+µ
0 1

).

Theorem 3.3. The subgroup U and its conjugates generate SL2(F ). More precisely, each
matrix of the form ( 1 0

∗ 1 ) is conjugate to a matrix of the form ( 1 ∗
0 1 ), and every element of

SL2(F ) is the product of at most 4 elements of the form ( 1 ∗
0 1 ) or ( 1 0

∗ 1 ).

This is the analogue for SL2(F ) of the 3-cycles generating An.

Proof. The matrix ( 0 −1
1 0 ) is in SL2(F ) and ( 0 −1

1 0 )( 1 λ
0 1 )( 0 −1

1 0 )−1 = ( 1 0
−λ 1 ), so ( 0 −1

1 0 ) conju-
gates U = {( 1 ∗

0 1 )} to the group of lower triangular matrices {( 1 0
∗ 1 )}.

Pick ( a bc d ) in SL2(F ). To show it is a product of matrices of type ( 1 ∗
0 1 ) or ( 1 0

∗ 1 ), first
suppose b 6= 0. Then(

a b
c d

)
=

(
1 0

(d− 1)/b 1

)(
1 b
0 1

)(
1 0

(a− 1)/b 1

)
.

If c 6= 0 then (
a b
c d

)
=

(
1 (a− 1)/c
0 1

)(
1 0
c 1

)(
1 (d− 1)/c
0 1

)
.

If b = 0 and c = 0 then the matrix is ( a 0
0 1/a ), and(

a 0
0 1/a

)
=

(
1 0

(1− a)/a 1

)(
1 1
0 1

)(
1 0

a− 1 1

)(
1 −1/a
0 1

)
. �
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So far F has been a general field. Now we reach a result that requires |F | ≥ 4.

Theorem 3.4. If |F | ≥ 4 then [SL2(F ),SL2(F )] = SL2(F ).

Proof. We compute an explicit commutator:(
a 0
0 1/a

)(
1 b
0 1

)(
a 0
0 1/a

)−1(
1 b
0 1

)−1
=

(
1 b(a2 − 1)
0 1

)
.

Since |F | ≥ 4, there is an a 6= 0, 1, or −1 in F , so a2 6= 1. Using this value of a and
letting b run over F shows [SL2(F ), SL2(F )] contains U . Since the commutator subgroup
is normal, it contains every subgroup conjugate to U , so [SL2(F ), SL2(F )] = SL2(F ) by
Theorem 3.3. �

Theorem 3.4 is false when |F | = 2 or 3: SL2(F2) = GL2(F2) is isomorphic to S3 and
[S3, S3] = A3. In SL2(F3) there is a unique 2-Sylow subgroup, so it is normal, and its index
is 3, so the quotient by it is abelian. Therefore the commutator subgroup of SL2(F3) lies
inside the 2-Sylow subgroup (in fact, the commutator subgroup is the 2-Sylow subgroup).

Theorem 3.5. If |F | ≥ 4 then the group PSL2(F ) is simple.

Proof. By the previous four theorems the action of SL2(F ) on the linear subspaces of F 2

satisfies the hypotheses of Iwasawa’s theorem, and its kernel is the center of SL2(F ). �

4. Simplicity of PSLn(F ) for n > 2

To prove PSLn(F ) is simple for all F when n > 2, we will study the action of SLn(F ) on
the linear subspaces of Fn, which is the projective space Pn−1(F ).

Theorem 4.1. The action of SLn(F ) on Pn−1(F ) is doubly transitive with kernel equal to
the center of the group and the stabilizer of some point has an abelian normal subgroup.

Proof. For nonzero v in Fn, write the linear subspace Fv as [v]. Pick [v1] 6= [v2] and
[w1] 6= [w2] in Pn−1(F ). We seek an A ∈ SLn(F ) such that A[v1] = [w1] and A[v2] = [w2].

Extend v1, v2 and w1, w2 to bases v1, . . . , vn and w1, . . . , wn of Fn. Let L : Fn → Fn be
the linear map where Lvi = wi for all i, so detL 6= 0 and on Pn−1(F ) we have L[vi] = [wi]
for all i. In particular, L[v1] = [w1] and L[v2] = [w2]. Alas, detL may not be 1. For c ∈ F×,
let Lc : Fn → Fn be the linear map where Lcvi = wi for i 6= n and Lcvn = cwn, so L = L1.
Then Lc sends [vi] to [wi] for all i and detLc = cdetL, so Lc ∈ SLn(F ) for c = 1/ detL.

If A ∈ SLn(F ) is in the kernel of this action then A[v] = [v] for all nonzero v ∈ Fn,
so Av = λvv, where λv ∈ F×: every nonzero element of Fn is an eigenvector of A. The
only matrices for which all vectors are eigenvectors are scalar diagonal matrices. To prove
this, use the equation Av = λvv when v = ei, v = ej , and v = ei + ej for the standard
basis e1, . . . , en of Fn. The equation A(ei + ej) = Aei + Aej implies λei+ejei + λei+ejej =
λeiei+λejej , so λei = λei+ej = λej . Let λ be the common value of λei over all i, so Av = λv
when v runs through the basis. By linearity, Av = λv for all v ∈ Fn, so A is a scalar
diagonal matrix with determinant 1. It is left to the reader to check that the center of
SLn(F ) is also the scalar diagonal matrices with determinant 1.
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To show the stabilizer of some point in Pn−1(F ) has an abelian normal subgroup, we
look at the stabilizer H of the point 

1
0
...
0

 ∈ Pn−1(F ),

which is the group of n× n determinant 1 matrices(
a ∗
0 M

)
where a ∈ F×, M ∈ GLn−1(F ), and ∗ is a row vector of length n − 1. For this to be in
SLn(F ) means a = 1/detM . The projection H → GLn−1(F ) sending ( a ∗0 M ) onto M has
abelian kernel

�(4.1) U :=

{(
1 ∗
0 In−1

)}
∼= Fn−1.

To conclude by Iwasawa’s theorem that PSLn(F ) is simple, it remains to show

• the subgroups of SLn(F ) that are conjugate to U generate SLn(F ),
• [SLn(F ), SLn(F )] = SLn(F ).

This will follow from a study of the elementary matrices In+λEij where i 6= j and λ ∈ F×.
An example of such a matrix when n = 3 is

I3 + λE23 =

1 0 0
0 1 λ
0 0 1

 .

The matrix In +λEij has 1’s on the main diagonal and a λ in the (i, j) position. Therefore
its determinant is 1, so such matrices are in SLn(F ). The most basic example of such an
elementary matrix in U is

(4.2) In + E12 =

1 1 0
0 1 0
0 0 In−2

 .

Here are the two properties we will need about the elementary matrices In + λEij :

(1) For n > 2, each In + λEij is conjugate in SLn(F ) to In + E12.
(2) For n > 2, the matrices In + λEij generate SLn(F ).

These properties imply the conjugates of In +E12 generate SLn(F ). Since In +E12 ∈ U ,
the subgroups of SLn(F ) that are conjugate to U generate SLn(F ), so the next theorem
would complete the proof that PSLn(F ) is simple for n > 2.

Theorem 4.2. For n > 2, [SLn(F ), SLn(F )] = SLn(F ).

Proof. We will show In + E12 is a commutator in SLn(F ). Then, since the commu-
tator subgroup is normal, the above two properties of elementary matrices imply that
[SLn(F ),SLn(F )] contains every In + λEij , and therefore [SLn(F ),SLn(F )] = SLn(F ).

Set

g =

1 0 1
0 1 0
0 0 1

 and h =

1 0 0
0 1 0
0 1 1

 .
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Then

ghg−1h−1 =

1 1 0
0 1 0
0 0 1

 ,

which is I3 + E12. For n ≥ 4, In + E12 is the block matrix1 1 0
0 1 0
0 0 In−2

 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 In−3


=

(
g O
O In−3

)(
h O
O In−3

)(
g O
O In−3

)−1(
h O
O In−3

)−1
. �

All that remains is to prove the two properties we listed of the elementary matrices, and
this is handled by the next two theorems.

Theorem 4.3. For n > 2, each In +λEij with λ ∈ F× is conjugate in SLn(F ) to In +E12.

Proof. Let T = In + λEij . For the standard basis e1, . . . , en of Fn,

T (ek) =

{
ek, if k 6= j,

λei + ej , if k = j.

We want a basis e′1, . . . , e
′
n of Fn in which the matrix representation of T is In + E12, i.e.,

T (e′k) = e′k for k 6= 2 and T (e′2) = e′1 + e′2.
Define a basis f1, . . . , fn of Fn by f1 = λei, f2 = ej , and f3, . . . , fn is some ordering of

the n− 2 standard basis vectors of Fn besides ei and ej . Then

T (f1) = λT (ei) = λei = f1, T (f2) = T (ej) = λei + ej = f1 + f2, T (fk) = fk for k ≥ 3,

so relative to the basis f1, . . . , fn the matrix representation of T is In + E12. Therefore

T = A(In + E12)A
−1,

where A is the matrix such that A(ek) = fk for all k. (Check T = A(In + E12)A
−1

by checking both sides take the same values at f1, . . . , fn.) There is no reason to expect
detA = 1, so the equation T = A(In + E12)A

−1 shows us T and In + E12 are conjugate in
GLn(F ), rather than in SLn(F ). With a small change we can get a conjugating matrix in
SLn(F ), as follows. For all c ∈ F× we have

T = Ac(In + E12)A
−1
c ,

where

Ac(ek) =

{
fk, if k < n,

cfn, if k = n.

(Check both sides of the equation T = Ac(In+E12)A
−1
c are equal at f1, . . . , fn−1, cfn, where

we need n > 2 for both sides to be the same at f2.) The columns of Ac are the same as
the columns of A except for the nth column, where Ac is c times the nth column of A.
Therefore det(Ac) = cdetA, so if we use c = 1/ detA then Ac ∈ SLn(F ). That proves T is
conjugate to In + E12 in SLn(F ). �



8 KEITH CONRAD

Example 4.4. Let

T = I3 + λE23 =

1 0 0
0 1 λ
0 0 1

 .

Starting from the standard basis e1, e2, e3 of F 3, introduce a new basis f1, f2, f3 by f1 = λe2,
f2 = e3, and f3 = e1. Since T (f1) = f1, T (f2) = f1 + f2, and T (f3) = f3, we have1 0 0

0 1 λ
0 0 1

 =

0 0 1
λ 0 0
0 1 0

1 1 0
0 1 0
0 0 1

0 0 1
λ 0 0
0 1 0

−1 ,
where the conjugating matrix 0 0 1

λ 0 0
0 1 0


has for its columns f1, f2, and f3 in order. The determinant of this conjugating matrix is
λ, so it is usually not in SL3(F ). If we insert a nonzero constant c into the third column
then we get a more general conjugation relation between I3 + λE23 and I3 + E12:1 0 0

0 1 λ
0 0 1

 =

0 0 c
λ 0 0
0 1 0

1 1 0
0 1 0
0 0 1

0 0 c
λ 0 0
0 1 0

−1 .
The conjugating matrix has determinant λc, so using c = 1/λ makes the conjugating matrix
have determinant 1, which exhibits an SL3(F )-conjugation between I3 +λE23 and I3 +E12.

Theorem 4.5. For n ≥ 2, the matrices In +λEij with i 6= j and λ ∈ F× generate SLn(F ).

Proof. This will be a sequence of tedious computations. By a matrix calculation,

(4.3) EijEk` = δjkEi` =

{
Ei`, if j = k,

O, if j 6= k.

Therefore (In + λEij)(In + µEij) = In + (λ + µ)Eij , so (In + λEij)
−1 = 1 − λEij , so the

theorem amounts to saying that every element of SLn(F ) is a product of matrices In+λEij .
We already proved the theorem for n = 2 in Theorem 3.3, so we can take n > 2 and

assume the theorem is proved for SLn−1(F ). Pick A ∈ SLn(F ). We will show that by
multiplying A on the left or right by suitable elementary matrices In + λEij we can obtain
a block matrix ( 1 0

0 A′ ). Since this is in SLn(F ), taking its determinant shows detA′ = 1, so

A′ ∈ SLn−1(F ). By induction A′ is a product of elementary matrices In−1 +λEij , so ( 1 0
0 A′ )

would be a product of block matrices of the form ( 1 0
0 In−1+λEij

), which is In + λEi+1 j+1.
Therefore

(product of some In + λEij)A(product of some In + λEij) = product of some In + λEij ,

and we can solve for A to see that it is a product of matrices In + λEij .
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The effect of multiplying an n × n matrix A by In + λEij on the left or right is an
elementary row or column operation:

(In + λEij)A =


a11 · · · a1n
...

. . .
...

ai1 + λaj1 · · · ain + λajn
...

. . .
...

an1 · · · ann

 ith row = ith row of A+ λ(jth row of A)

and

A(In + λEij) =

a11 · · · a1j + λa1i · · · a1n
...

. . .
...

. . .
...

an1 · · · anj + λani · · · ann


jth col. = jth col. of A+ λ(ith col. of A)

Looking along the first column of A, some entry is not 0 since detA 6= 0. If some ak1 in A
is not 0 where k > 1, then

(4.4)

(
In +

1− a11
ak1

E1k

)
A =

(
1 · · ·
...

. . .

)
.

If a21, . . . , an1 are all 0, then a11 6= 0 and(
In +

1

a11
E21

)
A =

a11 · · ·
1 . . .
...

. . .

 .

Then by (4.4) with k = 2,

(In + (1− a11)E12)

(
In +

1

a11
E21

)
A =

(
1 · · ·
...

. . .

)
.

Once we have a matrix with upper left entry 1, multiplying it on the left by In + λEi1
for i 6= 1 will add λ to the (i, 1)-entry, so with a suitable λ we can make the (i, 1)-entry of
the matrix 0. Thus multiplication on the left by suitable matrices of the form In + λEij
produces a block matrix ( 1 ∗

0 B ) whose first column is all 0’s except for the upper left entry,
which is 1. Multiplying this matrix on the right by In + λE1j for j 6= 1 adds λ to the
(1, j)-entry without changing column other than the jth column. With a suitable choice of
λ we can make the (1, j)-entry equal to 0, and carrying this out for j = 2, . . . , n leads to a
block matrix ( 1 0

0 A′ ), which is what we need to conclude the proof by induction. �
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