SIMPLICITY OF PSL,(F)

KEITH CONRAD

1. INTRODUCTION

For a field F' and integer n > 2, the projective special linear group PSL, (F) is the quotient
group of SL,,(F') by its center: PSL,(F) = SL,(F)/Z(SL,(F)). In 1831, Galois claimed
that PSLy(F)) is a simple group for all primes p > 3, although he didn’t give a proof. He
had to exclude p = 2 and p = 3 since PSLy(F2) = S5 and PSLy(F3) = Ay, and these groups
are not simple. It turns out that PSL,(F') is a simple group for all n > 2 and all fields F’
except when n = 2 and F' = Fy and F3. The proof of this was developed over essentially
30 years, from 1870 to 1901:

e Jordan [4] for n > 2 and F' = F, except (n,p) = (2,2) and (2,3).
e Moore [5] for n = 2 and F all finite fields of size greater than 3.
e Dickson for n > 2 and F finite [1], and for n > 2 and F infinite [2].

We will prove simplicity of PSL, (F') using a criterion of Iwasawa [3] from 1941 that
relates simple quotient groups and doubly transitive group actions. This criterion will be
developed in Section 2, and applied to PSLa(F) in Section 3 and PSL,,(F) for n > 2 in
Section 4.

2. DOUBLY TRANSITIVE ACTIONS AND IWASAWA’S CRITERION

An action of a group G on a set X is called transitive when, given two distinct x and
y in X, there is a ¢ € G such that g(z) = y. We call the action doubly transitive if each
pair of distinct points in X can be carried to every other pair of distinct points in X by
some element of G. That is, given two pairs (x1,x2) and (y1,y2) in X x X, where 1 # z2
and y; # Yo, there is a g € G such that g(x1) = y; and g(z2) = y2. Although the x;’s are
distinct and the y;’s are distinct, we do allow an z; to be a y;. For instance, if z,2’, 2" are
three distinct elements of X then there is a g € G such that g(z) = = and g(z’) = 2”. (Here
x1 =y1 =2 and x9 = 2/, yo = 2”.) Necessarily a doubly transitive action requires | X| > 2.

Example 2.1. The action of A4 on {1,2,3,4} is doubly transitive.

Example 2.2. The action of D4y on {1,2,3,4}, as vertices of a square, is not doubly
transitive since a pair of adjacent vertices can’t be sent to a pair of nonadjacent vertices.

Example 2.3. For all fields F, the group Aff(F) acts on F by (&%)z = ax + b and this
action is doubly transitive.

Example 2.4. For all fields F, the group GLy(F) acts on F? — {(8)} by the usual way
matrices act on vectors, but this action is not doubly transitive since linearly dependent
vectors can’t be sent to linearly independent vectors by a matrix.

Theorem 2.5. If G acts doubly transitively on X then the stabilizer subgroup of each point

in X is a mazimal subgroup of G.
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A maximal subgroup is a proper subgroup contained in no other proper subgroup.

Proof. Pick x € X and let H, = Stab,.

Step 1: For each g ¢ H,, G = H, U H,gH,.

For ¢’ € G such that ¢ ¢ H,, we will show ¢’ € H,gH,. Both gx and ¢’z are not z,
so by double transitivity with the pairs (z, gz) and (z,¢’'z) there is some ¢” € G such that
¢"r =z and ¢"(gx) = ¢'x. The first equation implies ¢” € H,, so let’s write g” as h. Then
h(gz) = g'z,s0 ¢ € hgH, C HygH,.

Step 2: H, is a maximal subgroup of G.

The group H, is not all of G, since H, fixes x while G carries x to each element of X
and | X| > 2. Let K be a subgroup of G strictly containing H, and pick g € K — H,. By
step 1, G = H, U H,gH,. Both H, and H,gH, are in K, so G C K. Thus K = G. O

The converse of Theorem 2.5 is false. If H is a maximal subgroup of G then left multipli-
cation of G on G/H has H as a stabilizer subgroup, but this action is not doubly transitive
if G has odd order because a finite group with a doubly transitive action has even order.

Theorem 2.6. Suppose G acts doubly transitively on a set X. Any normal subgroup N <G
acts on X either trivially or transitively.

Proof. Suppose N does not act trivially: nz # x for some x € X and some n # 1 in N.
Pick arbitrary y and 3 in X with y # y'. By double transitivity, there is g € G such that
gr =y and g(nx) = . Then v = (gng~)(gx) = (gng~')(y) and gng=! € N, so N acts
transitively on X. O

Example 2.7. The action of A4 on {1, 2, 3,4} is doubly transitive and the normal subgroup
{(1),(12)(34), (13)(24), (14)(23)} < A4 acts transitively on {1,2,3,4}.

Example 2.8. For a field F, let Aff(F') act on F' by (&%)z = ax + b. This is doubly
transitive and the normal subgroup N = {(} %) : b € F'} acts transitively (by translations)
on F'.

Example 2.9. The action of Dy on the 4 vertices of a square is not doubly transitive.
Consistent with Theorem 2.6, the normal subgroup {1, 72} of Dy acts on the vertices neither
trivially nor transitively.

Here is the main group-theoretic result we will use to prove PSL,, (F) is simple.

Theorem 2.10 (Iwasawa). Let G act doubly transitively on a set X. Assume the following:

(1) For some x € X the group Stab, has an abelian normal subgroup whose conjugate
subgroups generate G.

(2) [G,G] = G.
Then G/K is a simple group, where K is the kernel of the action of G on X.

The kernel of an action is the kernel of the homomorphism G — Sym(X); it’s those g
that act like the identity on X.

Proof. To show G/K is simple we will show the only normal subgroups of G lying between
K and G are K and G. Let K C N C G with N < G. Let H = Stab,, so H is a maximal
subgroup of G (Theorem 2.5). Since N is normal, NH = {nh :n € N, h € H} is a subgroup
of G, and it contains H, so by maximality either NH = H or NH = (. By Theorem 2.6,
N acts trivially or transitively on X.
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If NH = H then N C H, so N fixes . Therefore N does not act transitively on X, so
N must act trivially on X, which implies N C K. Since K C N by hypothesis, we have
N=K.

Now suppose NH = G. Let U be the abelian normal subgroup of H in the hypothesis:
its conjugate subgroups generate GG. Since U <« H, NU <« NH = G. Then for g € G,
gUg™! € g(NU)g~! = NU, which shows NU contains all the conjugate subgroups of U.
By hypothesis it follows that NU = G.

Thus G/N = (NU)/N = U/(N NnU). Since U is abelian, the isomorphism tells us that
G/N is abelian, so [G,G] C N. Since G = [G, G| by hypothesis, we have N = G. O

Example 2.11. We can use Theorem 2.10 to show Ajs is a simple group. Its natural action
on {1,2,3,4,5} is doubly transitive. Let x = 5, so Stab, = Ay, which has the abelian

normal subgroup
{(1), (12)(34), (13)(24), (14)(23)}.

The As-conjugates of this subgroup generate As since the (2,2)-cycles in Ay are all conjugate
in A5 and they generate As. The commutator subgroup [A4s, As] contains every (2,2)-cycle:
if a,b, c,d are distinct then

(ab)(cd) = (abe)(abd)(abe) ™ (abd) ™.
Therefore [As, As] = As, so As is simple.

3. SIMPLICITY OF PSLy(F)

Let I be a field. The group SL(F) acts on F? — {(8)}, but this action is not doubly
transitive since linearly dependent vectors can’t be sent to linearly independent vectors by
a matrix. (We saw this for GLy(F') in Example 2.4, and the same argument applies for its
subgroup SLo(F).) Linearly dependent vectors in F? lie along the same line through the
origin, so let’s consider the action of SLo(F) on the linear subspaces of F%: let A € SLo(F)
send the line L = F'v to the line A(L) = F(Av). (Equivalently, we let SLo(F) act on P1(F),
the projective line over F'.)

Theorem 3.1. The action of SLa(F) on the linear subspaces of F? is doubly transitive.

Proof. An obvious pair of distinct linear subspaces in F? is F((l)) and F((l)) It suffices to
show that, given two distinct linear subspaces Fv and Fw of F2, there is an A € SLo(F)
that sends F(é) to Fv and F((l)) to Fw, because we can then use F((l)) and F((l)) as an
intermediate step to send a pair of distinct linear subspaces to every other pair of distinct
linear subspaces.

Let v = (‘é) and w = (Z). Since F'v # Fw, the vectors v and w are linearly independent,

so D := ad — be is nonzero. Let A = ( %g), which has determinant a(d/D) — (b/D)c =

D/D =1, so A € SLy(F). Since A((l)) = (¢) =wvand A((l)) = (Z;g) = (1/D)w, A sends

F((l)) to Fv and F(?) to F(1/D)w = Fuw. O

We will apply Iwasawa’s criterion (Theorem 2.10) to SLa(F') acting on the set of linear
subspaces of F2. This action is doubly transitive by Theorem 3.1. It remains to check
e the kernel K of this action is the center of SLa(F), so SLa(F')/K = PSLy(F),
e the stabilizer subgroup of ((1)) contains an abelian normal subgroup whose conjugate

subgroups generate SLa(F),
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It is only in the third part that we will require |F| > 3. (At some point we need to avoid
F =Fy and F = F3, because PSLy(F3) and PSLy(F'3) are not simple.)

Theorem 3.2. The kernel of the action of SLy(F) on the linear subspaces of F? is the
center of SLa(F).

Proof. A matrix (2%) € SLy(F) is in the kernel K of the action when it sends each linear
subspace of F? back to itself. If the matrix preserves the lines F ((1)) and F ((1]) then ¢ =0
and b =0, so (¢%) = (29). The determinant is 1, so d = 1/a. If (§ 1%) preserves the
line F(}) then a = 1/a, so a = £1. This means (¢%) = £(} 7). Conversely, the matrices
+(39) both act trivially on the linear subspaces of F?, so K = {£(} (1])}

If a matrix (2 %) is in the center of SLy(F) then it commutes with (1) and (}9), which
implies @ = d and b = ¢ (check!). Therefore (¢5%) = (¢9). Since this has determlnant 1,
a? =1, so a = +1. Conversely, +-(}9) commutes with all matrices. O

Let x = F([l)) Its stabilizer subgroup in SLy(F) is

Staby1) = {A € SLy(F) : A@ < F@}
_ {<8 Z) e SL2(F)}
(e feerver)

This subgroup has a normal subgroup

{6 D)-( e

(1>\+u)

which is abelian since (§ ¢ )(k 0

0h) =
Theorem 3.3. The subgroup U and its conjugates generate SLQ( ). More precisely, each

matriz of the form (19) is conjugate to a matriz of the form (} %), and every element of
SLo(F) is the product of at most 4 elements of the form ({ %) or (L1 9).

This is the analogue for SLy(F') of the 3-cycles generating A,,.

Proof. Thema‘crlx(1 “4)isin SLo(F) and (9 1) (5 ) (Y )= (4 7), so
gates U = {({ 1)} to the group of lower triangular matrlces {(19H}

Pick (¢%) in SLy(F). To show it is a product of matrices of type (§3) or (19), first
suppose b # 0. Then

(Z Z) - ((d —11)/5 ?) ((1) 11)) <(a —11)/b ?)
€96 06 )

If b =0 and ¢ = 0 then the matrix is (g 1% and

(6 o) = (oo DO )G Y6 ) o

If ¢ # 0 then

o =
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So far F' has been a general field. Now we reach a result that requires |F| > 4.
Theorem 3.4. If |F| > 4 then [SLy(F'),SLa(F)] = SLa(F).

Proof. We compute an explicit commutator:

a 0N\ /1 b\ [a O\ '/1 b\' (1 ba®-1)
(6 1) 0 )6 ) G1) =6"")
Since |F| > 4, there is an a # 0,1, or —1 in F, so a® # 1. Using this value of a and
letting b run over F' shows [SLa(F'), SLa(F)] contains U. Since the commutator subgroup
is normal, it contains every subgroup conjugate to U, so [SLa(F'),SLa(F)] = SLa(F') by
Theorem 3.3. O

Theorem 3.4 is false when |F| = 2 or 3: SLa(F2) = GL2(F2) is isomorphic to S3 and
[S3, 53] = As. In SLy(F3) there is a unique 2-Sylow subgroup, so it is normal, and its index
is 3, so the quotient by it is abelian. Therefore the commutator subgroup of SLy(F'3) lies
inside the 2-Sylow subgroup (in fact, the commutator subgroup is the 2-Sylow subgroup).

Theorem 3.5. If |F| > 4 then the group PSLa(F) is simple.

Proof. By the previous four theorems the action of SLy(F) on the linear subspaces of F
satisfies the hypotheses of Iwasawa’s theorem, and its kernel is the center of SLa(F). O

4. SIMPLICITY OF PSL,(F) FOR n > 2

To prove PSL,,(F') is simple for all ' when n > 2, we will study the action of SL,,(F") on
the linear subspaces of F™, which is the projective space P"~1(F).

Theorem 4.1. The action of SL,(F) on P"~Y(F) is doubly transitive with kernel equal to
the center of the group and the stabilizer of some point has an abelian normal subgroup.

Proof. For nonzero v in F", write the linear subspace Fv as [v]. Pick [vj] # [v2] and
[w1] # [wa] in P"1(F). We seek an A € SL,(F) such that A[v1] = [w1] and A[ve] = [wy).

Extend v, v9 and wq, ws to bases vy,...,v, and wy,...,w, of F™. Let L: F™ — F™ be
the linear map where Lv; = w; for all 4, so det L # 0 and on P"~}(F) we have L[v;] = [w;]
for all 4. In particular, L[v1] = [w;] and L[vg] = [we]. Alas, det L may not be 1. For ¢ € F*,
let L.: F'™ — F™ be the linear map where L.v; = w; for i # n and L.v, = cwy, so L = L.
Then L. sends [v;] to [w;] for all i and det L. = c¢det L, so L. € SL,(F) for ¢ =1/ det L.

If A € SL,(F) is in the kernel of this action then Afv] = [v] for all nonzero v € F",
so Av = A\yv, where A\, € F*: every nonzero element of F" is an eigenvector of A. The
only matrices for which all vectors are eigenvectors are scalar diagonal matrices. To prove
this, use the equation Av = A\,v when v = ¢;, v = ¢;, and v = ¢; + ¢; for the standard
basis e1,...,e, of F". The equation A(e; + e;) = Ae; + Ae; implies A, e, € + Ae;te;€5 =
Ae;€it Ae; €5, 80 Ae; = Aejte; = Ae;- Let A be the common value of A, over all i, so Av = v
when v runs through the basis. By linearity, Av = Av for all v € F", so A is a scalar
diagonal matrix with determinant 1. It is left to the reader to check that the center of
SL,,(F) is also the scalar diagonal matrices with determinant 1.
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To show the stabilizer of some point in P"~!(F) has an abelian normal subgroup, we
look at the stabilizer H of the point

1
0

e P I(F),
0

which is the group of n x n determinant 1 matrices

(6 )

where a € F*, M € GL,_1(F), and * is a row vector of length n — 1. For this to be in
SL,(F) means a = 1/det M. The projection H — GL,_1(F) sending (g p7) onto M has
abelian kernel

(4.1) U= {(é I:1>} ~ el O

To conclude by Iwasawa’s theorem that PSL, (F) is simple, it remains to show
e the subgroups of SL,,(F') that are conjugate to U generate SL,,(F),
e [SL,(F),SL,(F)] = SL,(F).
This will follow from a study of the elementary matrices I,, + AE;; where i # j and A € F'*.
An example of such a matrix when n = 3 is

1

I3+ AEx3= | 0

0

The matrix I, + AE;; has 1’s on the main diagonal and a A in the (4, j) position. Therefore

its determinant is 1, so such matrices are in SL,(F'). The most basic example of such an
elementary matrix in U is

S = O

0
A
1

11 o0
(4.2) Li+Ep=(01 o0
0 0 I,

Here are the two properties we will need about the elementary matrices I, + AE;;:
(1) For n > 2, each I, + AE;; is conjugate in SL,(F) to I, + E1a.
(2) For n > 2, the matrices I, + A\E;; generate SLy,(F').
These properties imply the conjugates of I, + E12 generate SL,, (F). Since I, + F12 € U,
the subgroups of SL,(F) that are conjugate to U generate SL,(F'), so the next theorem
would complete the proof that PSL,,(F) is simple for n > 2.

Theorem 4.2. Forn > 2, [SL,(F'),SL,(F)] = SL,(F).

Proof. We will show I, + Ej2 is a commutator in SL,(F). Then, since the commu-
tator subgroup is normal, the above two properties of elementary matrices imply that
[SLy,(F'), SLy,(F')] contains every I, + AE;;, and therefore [SL,, (F'), SL,,(F')] = SLy(F).

Set

g:

SO =
O = O

1 10
0O) andh=1]0 1
1 01

= o O
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Then

ghg™'h™t =

OO =
O~
= o O

which is I3 + Eq5. For n > 4, I, + E15 is the block matrix

L1 o 110 0
010 0

01 0 |=
00 I 001 0
n—2 00 0 I, 3

(g ON[(h ON{(g ON'(h O\ -
- \0 In—3 O In—3 @ In—3 0 In—3 ’

All that remains is to prove the two properties we listed of the elementary matrices, and
this is handled by the next two theorems.

Theorem 4.3. Forn > 2, each I, + AE;; with A € F* is conjugate in SL,,(F') to I,, + Eq2.
Proof. Let T' = I,, + AEj;j. For the standard basis e1,...,e, of F",

T(e )_ ek’? 1fk:#]?
YT\ Aeitey, ifk=j.

We want a basis €/,..., e}, of F™ in which the matrix representation of T' is I,, + F12, i.e.,
T(e,) =€), for k # 2 and T'(e}) = €} + €.

Define a basis f1,..., f, of F™ by fi = Xe;, fo = ej, and f3,..., f, is some ordering of
the n — 2 standard basis vectors of I besides e; and e;. Then

T(f1) = AT(e;) = Xei = f1, T(f2) =T(ej) = Ne; +ej = f1+ fo, T(fr) = fr for k>3,
so relative to the basis fi,..., f, the matrix representation of 1" is I, + E12. Therefore
T = A(I, + Ey2) A1,

where A is the matrix such that A(ey) = fi for all k. (Check T = A(I, + Ep2)A~1
by checking both sides take the same values at fi,..., f,.) There is no reason to expect
det A = 1, so the equation T = A(I,, + F12)A~"! shows us T and I,, + E1» are conjugate in
GL,(F), rather than in SL,(F). With a small change we can get a conjugating matrix in
SL,(F), as follows. For all ¢ € F'* we have

T =A(I, + E;n) AL,

where

Ao = [T iTE<n,
T e, if k=

(Check both sides of the equation T' = A.(I,,+ F12) A ! are equal at fi, ..., fn_1,cfn, where
we need n > 2 for both sides to be the same at f5.) The columns of A, are the same as
the columns of A except for the nth column, where A. is ¢ times the nth column of A.
Therefore det(A.) = cdet A, so if we use ¢ = 1/det A then A, € SL,,(F'). That proves T is
conjugate to I, + F1o in SL,(F). O
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Example 4.4. Let

T = I3+ AEa3 =

o O =
O = O
— > O

Starting from the standard basis eg, e, e3 of F3, introduce a new basis f1, fa, f3 by fi = Aea,
fo=es3, and f3 =ejy. Since T(f1) = f1, T(f2) = f1 + f2, and T(f3) = f3, we have

-1

1 00 0 01 110 0 01
01 A=A 00 010 A 00 )
0 01 010 0 01 010

where the conjugating matrix

S > O
_— o O
S O =

has for its columns fi, fo, and f3 in order. The determinant of this conjugating matrix is
A, so it is usually not in SL3(F'). If we insert a nonzero constant ¢ into the third column
then we get a more general conjugation relation between I3 + A\FEs3 and I3 + F1s:

-1

100 0 0 ¢ 110 0 0 ¢
01 X]=|A 00 010 A 00
0 01 0 10 0 01 010

The conjugating matrix has determinant Ac, so using ¢ = 1/\ makes the conjugating matrix
have determinant 1, which exhibits an SL3(F)-conjugation between I3 + AE23 and I3+ Ejo.

Theorem 4.5. Forn > 2, the matrices I, + A\E;; with i # j and A € F* generate SLy,(F).

Proof. This will be a sequence of tedious computations. By a matrix calculation,

Ey, ifj=k,
(4.3) EijEw = 0, Ey = {Olf ifj’ Lk
Therefore (I, + AEij)(In + pEij) = I + (A + w)Eij, so (I, + AE;;)~! = 1 — AE;j, so the
theorem amounts to saying that every element of SL,,(F') is a product of matrices I, + AEj;;.
We already proved the theorem for n = 2 in Theorem 3.3, so we can take n > 2 and
assume the theorem is proved for SL,_1(F). Pick A € SL,(F). We will show that by
multiplying A on the left or right by suitable elementary matrices I,, + AE;; we can obtain
a block matrix (§ $). Since this is in SL,(F), taking its determinant shows det A’ = 1, so
A" € SL,,_1(F). By induction A’ is a product of elementary matrices I,—1 + AEj;, so ((1) 2,)
would be a product of block matrices of the form (§ Infl‘(‘!)‘AEij ), which is I;, + AEj41 jy1-
Therefore

(product of some I,, + AE;j)A(product of some I,, + AE;;) = product of some I,, + AE;j,

and we can solve for A to see that it is a product of matrices I,, + AEj;.
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The effect of multiplying an n x n matrix A by I, + AE;; on the left or right is an
elementary row or column operation:

aii e Gin

(In+AEjj)A= | ai1 + Aaj1 -+ ain + Aajy | ith row = ith row of A 4+ A(jth row of A)
an1 e Ann

and

air - ajtAay - aig
A(I, + AE;j) = :
apl - Gpj+Xapi -

jth col. = jth col. of A+ A(ith col. of A)

Looking along the first column of A, some entry is not 0 since det A # 0. If some ag; in A
is not 0 where k£ > 1, then

(w1 (e tomea- (1 7))

If as1,...,a,1 are all 0, then ay; # 0 and

ai

1
(In + E21> A= |1
a :

Then by (4.4) with k = 2,

(In+ (1 — a11)E12) (In + C;Em) A= <1 ) .

Once we have a matrix with upper left entry 1, multiplying it on the left by I, + AE;;
for i # 1 will add A to the (i, 1)-entry, so with a suitable A we can make the (i, 1)-entry of
the matrix 0. Thus multiplication on the left by suitable matrices of the form I, + AE;;
produces a block matrix (§ ) whose first column is all 0’s except for the upper left entry,
which is 1. Multiplying this matrix on the right by I,, + AEy; for j # 1 adds X to the

(1, 7)-entry without changing column other than the jth column. With a suitable choice of

A we can make the (1, j)-entry equal to 0, and carrying this out for j = 2,...,n leads to a
block matrix (§ $), which is what we need to conclude the proof by induction. O
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