PRIME POWERS UNITS AND FINITE SUBGROUPS OF $GL_n(\mathbf{Q})$

KEITH CONRAD

1. INTRODUCTION

For an integer $m \ge 2$, write $(\mathbf{Z}/(m))^{\times}$ for the units modulo m: these are the numbers mod m with multiplicative inverses. We have $a \mod m \in (\mathbf{Z}/(m))^{\times}$ if and only if gcd(a, m) = 1. When m is a prime power p^k with $k \ge 1$, the units modulo p^k are all residues mod p^k besides the multiples of p, since being relatively prime to p^k is the same as not being divisible by p. Therefore

$$|(\mathbf{Z}/(p^k))^{\times}| = |\{0, 1, 2, \dots, p^k - 1\} - \{0, p, 2p, 3p, \dots, (p^k - 1)p\}| = p^k - p^{k-1} = p^{k-1}(p-1).$$

A fundamental result in number theory, going back to Gauss, is that the group $(\mathbf{Z}/(p))^{\times}$ is cyclic for every prime p: there is an element of $(\mathbf{Z}/(p))^{\times}$ with order p-1. When p is an odd prime, there is a similar result for powers of p.

Theorem 1.1. For an odd prime p and integer $k \ge 2$, the group $(\mathbf{Z}/(p^k))^{\times}$ is cyclic.

This is false for 2^k when $k \ge 3$, e.g. $(\mathbb{Z}/(8))^{\times} = \{1, 3, 5, 7 \mod 8\}$ has order 4 and each unit modulo 8 squares to 1, so no unit modulo 8 has order 4.

A proof that all groups $(\mathbf{Z}/(p))^{\times}$ are cyclic is in Appendix A. Building on that, we will show how to prove Theorem 1.1 using *p*-adic numbers. Then, using *p*-adic numbers in another way, we will apply Theorem 1.1 to compute a bound on the order of finite subgroups of $\operatorname{GL}_n(\mathbf{Q})$ in terms of *n* (Theorem 3.1).

2. The groups $(\mathbf{Z}/(p^k))^{\times}$ are cyclic

We will prove Theorem 1.1 by using a Teichmüller representative to lift a generator of $(\mathbf{Z}/(p))^{\times}$ multiplicatively into the *p*-adics.

Proof. By Theorem A.6, $(\mathbf{Z}/(p))^{\times}$ is cyclic. Let a generator of it be $g \mod p$ and let $\omega(g) \in \mathbf{Z}_p^{\times}$ be the Teichmuller representative for g, so $\omega(g)^{p-1} = 1$ and $\overline{\omega(g) \equiv g \mod p}$.

Integers modulo p^k and p-adic integers modulo p^k amount to the same thing. In the language of algebra, $\mathbf{Z}/(p^k)$ and $\mathbf{Z}_p/(p^k)$ are isomorphic rings in a natural way.

We are going to show the product $(1+p)\omega(g)$ is a generator of $(\mathbf{Z}/(p^k))^{\times}$ for all k. That is, if a is an integer such that $a \equiv (1+p)\omega(g) \mod p^k$ then $a \mod p^k$ generates $(\mathbf{Z}/(p^k))^{\times}$.

Since $(\mathbf{Z}/(p^k))^{\times}$ has size $p^{k-1}(p-1)$, it suffices to prove $((1+p)\omega(g))^m \equiv 1 \mod p^k$ only if m is divisible by $p^{k-1}(p-1)$.

Congruences mod p^k remain valid as congruences mod p, so

$$((1+p)\omega(g))^m \equiv 1 \mod p^k \Longrightarrow ((1+p)\omega(g))^m \equiv 1 \mod p \Longrightarrow g^m \equiv 1 \mod p,$$

so |(p-1)| m| since $g \mod p$ is a generator of $(\mathbf{Z}/(p))^{\times}$. Thus

$$((1+p)\omega(g))^m = (1+p)^m \omega(g)^m = (1+p)^m$$

 \mathbf{SO}

$$((1+p)\omega(g))^m \equiv 1 \mod p^k \Longrightarrow (1+p)^m \equiv 1 \mod p^k \Longrightarrow |(1+p)^m - 1|_p \le \frac{1}{p^k}.$$

For $m \in \mathbb{Z}^+$ and $b \in 1 + p\mathbb{Z}_p$, we have $|b^m - 1|_p = |m|_p |b - 1|_p$ when $p \neq 2$: see Appendix B. Taking b = 1 + p,

$$|(1+p)^m - 1|_p = |m|_p|(1+p) - 1|_p = \frac{|m|_p}{p}$$

Therefore $|(1+p)^m - 1|_p \le 1/p^k \Longrightarrow |m|_p/p \le 1/p^k \Longrightarrow |m|_p \le 1/p^{k-1} \Longrightarrow p^{k-1} |m|_p$. From $(p-1) \mid m$ and $p^{k-1} \mid m$ we get $p^{k-1}(p-1) \mid m$ since p-1 and p^{k-1} are relatively

From $(p-1) \mid m$ and $p^{\kappa-1} \mid m$ we get $p^{\kappa-1}(p-1) \mid m$ since p-1 and $p^{\kappa-1}$ are relatively prime. That completes the proof.

Corollary 2.1. If p is an odd prime and a mod p^2 is a generator of $(\mathbf{Z}/(p^2))^{\times}$ then a mod p^k is a generator of $(\mathbf{Z}/(p^k))^{\times}$ for all $k \geq 2$.

Proof. In \mathbf{Z}_p^{\times} set $a = \omega(a)u$, where $\omega(a)$ is the Teichmuller representative of a, so $u \in 1 + p\mathbf{Z}_p$ (since $a \equiv \omega(a) \mod p$).

Claim: $\omega(a)$ has order p-1 and $|u-1|_p = 1/p$ (*i.e.*, $u \in 1+p\mathbf{Z}_p$ and $u \notin 1+p^2\mathbf{Z}_p$).

Proof of claim: Let $d \ge 1$ be the order of $a \mod p$, so $d \mid (p-1)$. We want to prove d = p-1. From $a^d \equiv 1 \mod p$, raising both sides to the *p*th power gives us $a^{dp} \equiv 1 \mod p^2$ with the modulus "improved" to $p^{2,1}$ Therefore $p(p-1) \mid dp$, so $(p-1) \mid d$. We noted earlier that $d \mid (p-1)$ too, so d = p-1. The order of $a \mod p$ and $\omega(a)$ are the same, so $\omega(a)$ has order p-1.

Since $|u-1|_p \leq 1/p$, if $|u-1|_p \neq 1/p$ then $|u-1|_p \leq 1/p^2$, so $u \equiv 1 \mod p^2$. Then $a = \omega(a)u \equiv \omega(a) \mod p^2$, so $a^{p-1} \equiv \omega(a)^{p-1} \equiv 1 \mod p^2$, which contradicts $a \mod p^2$ being a generator of $(\mathbf{Z}/(p^2))^{\times}$. Thus $|u-1|_p = 1/p$. This finishes the proof of the claim.

When we proved in Theorem 1.1 that $(1+p)\omega(g) \mod p^k$ has order $(p-1)p^{k-1}$, the properties we used about g and 1+p were that $g \mod p$ has order p-1 and $|(1+p)-1|_p = 1/p$. Since $\omega(a)$ has order p-1 and $|u-1|_p = 1/p$, the arguments used for $(1+p)\omega(g)$ can be applied word for word to $u\omega(a) = a$, so $a \mod p^k$ generates $(\mathbf{Z}/(p^k))^{\times}$ for all $k \geq 2$. \Box

Remark 2.2. Here is a more conceptual description of what is going on in terms of *p*-adic quotient groups. We can view $(\mathbf{Z}_p/(p^k))^{\times}$ as an isomorphic group built from *p*-adic units:

$$(\mathbf{Z}/(p^k))^{\times} \cong (\mathbf{Z}_p/(p^k))^{\times} \cong \mathbf{Z}_p^{\times}/(1+p^k\mathbf{Z}_p).$$

The second isomorphism arises because elements of $(\mathbf{Z}_p/(p^k))^{\times}$ are represented by *p*-adic units, and when *u* and *v* are *p*-adic units we have

$$u = v$$
 in $\mathbf{Z}_p/(p^k) \iff u \in v + p^k \mathbf{Z}_p \iff \frac{u}{v} \in 1 + p^k \mathbf{Z}_p \iff u = v$ in $\mathbf{Z}_p^{\times}/(1 + p^k \mathbf{Z}_p)$.

What makes $\mathbf{Z}_p^{\times}/(1+p^k\mathbf{Z}_p)$ a nice model for the multiplicative group $(\mathbf{Z}/(p^k))^{\times}$ is that it is an actual quotient of multiplicative groups. This can't be done working in the integers alone, where the only units are ± 1 .

Writing $a = \omega(a)u$ provides a direct product decomposition $\mathbf{Z}_p^{\times} \cong \mu_{p-1} \times (1+p\mathbf{Z}_p)$, where μ_{p-1} is the (cyclic) group of (p-1)th roots of unity in the *p*-adic integers. Thus

$$\mathbf{Z}_{p}^{\times}/(1+p^{k}\mathbf{Z}_{p}) \cong (\mu_{p-1} \times (1+p\mathbf{Z}_{p}))/(1+p^{k}\mathbf{Z}_{p}) \cong \mu_{p-1} \times (1+p\mathbf{Z}_{p})/(1+p^{k}\mathbf{Z}_{p}).$$

¹In general for x and y in \mathbb{Z}_p , if $x \equiv y \mod p$ then $x^p \equiv y^p \mod p^2$. More generally, if $x \equiv y \mod p^k$ then $x^p \equiv y^p \mod p^{k+1}$.

We can figure out what the multiplicative quotient group $(1 + p\mathbf{Z}_p)/(1 + p^k\mathbf{Z}_p)$ looks like concretely by using the *p*-adic logarithm to turn it into an additive quotient group. Since $p \neq 2$, the function log: $1 + p\mathbf{Z}_p \to p\mathbf{Z}_p$ is an isomorphism, and since the *p*-adic logarithm is an isometry we get $\log(1 + p^k\mathbf{Z}_p) = p^k\mathbf{Z}_p$. Thus

$$(1+p\mathbf{Z}_p)/(1+p^k\mathbf{Z}_p) \stackrel{\log}{\cong} p\mathbf{Z}_p/(p^k) \cong \mathbf{Z}_p/(p^{k-1}) \cong \mathbf{Z}/(p^{k-1}) = \text{cyclic group of order } p^{k-1}.$$

Therefore

$$(\mathbf{Z}/(p^k))^{\times} \cong \mathbf{Z}_p^{\times}/(1+p^k\mathbf{Z}_p) \cong \mu_{p-1} \times (1+p\mathbf{Z}_p)/(1+p^k\mathbf{Z}_p) \cong \mathbf{Z}/(p-1) \times \mathbf{Z}/(p^{k-1}).$$

This is a direct product of cyclic groups of orders p-1 and p^{k-1} , which are relatively prime, so the direct product is also cyclic.

The structure of the group $(\mathbf{Z}/(2^k))^{\times}$ can be studied similarly to the case of odd p, but for $k \geq 3$ these groups will turn out not to be cyclic. They are almost cyclic: there is a cyclic subgroup of order equal to half the size of the group.

Theorem 2.3. For $k \ge 3$, $(\mathbf{Z}/(2^k))^{\times} = \langle -1, 5 \mod 2^k \rangle = \{\pm 5^j \mod 2^k : j \ge 0\}.$

Proof. The group $(\mathbf{Z}/(2^k))^{\times}$ has order $2^{k-1}(2-1) = 2^{k-1}$. We will show 5 mod 2^k has order 2^{k-2} . For $m \in \mathbf{Z}^+$ and $b \in 1 + 4\mathbf{Z}_2$ we have $|b^m - 1|_2 = |m|_2|b-1|_2$: see Appendix B. Therefore

$$5^{m} \equiv 1 \mod 2^{k} \iff |5^{m} - 1|_{2} \le \frac{1}{2^{k}} \iff |m|_{2}|5 - 1|_{2} \le \frac{1}{2^{k}} \iff |m|_{2} \le \frac{1}{2^{k-2}} \iff 2^{k-2} \mid m,$$

so 5 mod 2^k has order 2^{k-2} . No power of 5 mod 2^k is ever $-1 \mod 2^k$ since $5 \equiv 1 \mod 4$ while $-1 \equiv 3 \mod 4$. Therefore $-1 \mod 2^k \notin \langle 5 \mod 2^k \rangle$, and since $-1 \mod 2^k$ has order 2 the subgroup $\{\pm 5^j \mod 2^k : j \ge 0\}$ of $(\mathbf{Z}/(2^k))^{\times}$ has order $2 \cdot 2^{k-2} = 2^{k-1} = |(\mathbf{Z}/(2^k))^{\times}|$, which makes this subgroup equal to the whole group.

Remark 2.4. We can explain the group structure of $(\mathbf{Z}/(2^k))^{\times}$ by writing it as a quotient group of \mathbf{Z}_2^{\times} . Since $\mathbf{Z}_2^{\times} = \{\pm 1\} \times (1 + 4\mathbf{Z}_2)$, for $k \geq 2$ we have

$$(\mathbf{Z}/(2^k))^{\times} \cong (\mathbf{Z}_2/2^k)^{\times}$$
$$\cong \mathbf{Z}_2^{\times}/(1+2^k\mathbf{Z}_2)$$
$$\cong (\{\pm 1\} \times (1+4\mathbf{Z}_2))/(1+2^k\mathbf{Z}_2)$$
$$\cong \{\pm 1\} \times (1+4\mathbf{Z}_2)/(1+2^k\mathbf{Z}_2).$$

Using the 2-adic logarithm isomorphism $1 + 4\mathbf{Z}_2 \cong 4\mathbf{Z}_2$, which is also an isometry, we get

$$(1+4\mathbf{Z}_2)/(1+2^k\mathbf{Z}_2) \stackrel{\text{rog}}{\cong} 4\mathbf{Z}_2/2^k\mathbf{Z}_2 \cong \mathbf{Z}_2/2^{k-2} \cong \mathbf{Z}/(2^{k-2}),$$

so $(\mathbf{Z}/(2^k))^{\times} \cong \{\pm 1\} \times \mathbf{Z}/(2^{k-2}).$

3. Bounding finite subgroups of $\operatorname{GL}_n(\mathbf{Q})$

How large can a finite group of matrices be? If we allow matrix entries from the complex numbers, or even the real numbers, then there is no upper bound in general. For example, if d if a positive integer then a counterclockwise rotation by $2\pi/d$ radians in the plane \mathbf{R}^2 is represented by the matrix

$$\begin{pmatrix} \cos(2\pi/d) & -\sin(2\pi/d) \\ \sin(2\pi/d) & \cos(2\pi/d) \end{pmatrix}$$

KEITH CONRAD

in $\operatorname{GL}_2(\mathbf{R})$ that has order d, so $\operatorname{GL}_2(\mathbf{R})$ contains finite subgroups of arbitrarily large order.

If we restrict the numbers in the matrices to be rational, however, then there *is* an upper bound on how large a finite matrix group can be in terms of the size of the matrices. This result is due to Minkowski [4]. Our argument is adapted from [2, Chap. 4, Sect. 2].

Theorem 3.1 (Minkowski, 1887). For each $n \ge 1$ every finite subgroup of $GL_n(\mathbf{Q})$ has order dividing a number M(n) that depends only on n.

For example, it turns out that M(2) = 24, so every finite subgroup of $GL_2(\mathbf{Q})$ has order dividing $24 = 2^3 \cdot 3$. We are not claiming that there actually is a subgroup of $GL_2(\mathbf{Q})$ with order 24. In fact the largest size is 12, but there are subgroups of order not dividing 12 and those orders all divide 24 (see below for a subgroup of order 8).

Example 3.2. The matrix $\begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$ has order 6.

Example 3.3. Let $r = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $s = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then *r* has order 4, *s* has order 2, and $sr = r^{-1}s$, so the group $\langle r, s \rangle$ generated by *r* and *s* in $\operatorname{GL}_2(\mathbf{Q})$ has order 8.

The proof of Theorem 3.1 will use the finite groups $\operatorname{GL}_n(\mathbf{Z}/(p))$. Just as the symmetric group S_n has order n! that is a product of n integers, the order of $\operatorname{GL}_n(\mathbf{Z}/(p))$ has an explicit formula that is a product of n terms.

Lemma 3.4. For each prime p, $|\operatorname{GL}_n(\mathbf{Z}/(p))| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1}).$

Proof. See Appendix C. The proof is based on linear algebra over the field $\mathbf{Z}/(p)$.

Now we prove Theorem 3.1.

Proof. Let G be a finite subgroup of $\operatorname{GL}_n(\mathbf{Q})$. Since G contains only finitely many matrices, and each rational number is in \mathbf{Z}_p for all large primes p, the matrices in G have entries in \mathbf{Z}_p for all large p, so there is a prime p_0 such that $G \subset \operatorname{M}_n(\mathbf{Z}_p)$ for all $p > p_0$. We write $\operatorname{GL}_n(\mathbf{Z}_p)$ for the group of $n \times n$ matrices with \mathbf{Z}_p -entries that have inverses also with \mathbf{Z}_p entries; the condition for a matrix $A \in \operatorname{M}_n(\mathbf{Z}_p)$ to belong to $\operatorname{GL}_n(\mathbf{Z}_p)$ is that det $A \in \mathbf{Z}_p^{\times}$. If $A \in \operatorname{GL}_n(\mathbf{Q})$ has finite order then det $A \in \mathbf{Q}^{\times}$ has finite order, so det $A = \pm 1$. Therefore by Cramer's rule for inverting matrices, $G \subset \operatorname{GL}_n(\mathbf{Z}_p)$ for all $p > p_0$.

Claim: For every prime $p > p_0$, the order of G divides $|\operatorname{GL}_n(\mathbf{Z}/(p))|$.

Proof of claim: We can view G inside $\operatorname{GL}_n(\mathbf{Z}_p)$. Reducing matrix entries modulo p sends each matrix A in $\operatorname{GL}_n(\mathbf{Z}_p)$ to a matrix \overline{A} in $\operatorname{GL}_n(\mathbf{Z}_p/(p))$, which can be regarded as $\operatorname{GL}_n(\mathbf{Z}/(p))$ by the natural identification of $\mathbf{Z}_p/(p)$ with $\mathbf{Z}/(p)$. (We have $\overline{A} \in \operatorname{GL}_n(\mathbf{Z}_p/(p))$ since det $A = \pm 1 \Longrightarrow \det A \not\equiv 0 \mod p \Longrightarrow \det \overline{A} \neq 0$ in $\mathbf{Z}/(p)$.) Reduction $\operatorname{GL}_n(\mathbf{Z}_p) \to \operatorname{GL}_n(\mathbf{Z}_p/(p))$ is a group homomorphism.

The key point is that when $p > p_0$, two matrices A and B in the *finite* group G can't reduce mod p to the same matrix in $\operatorname{GL}_n(\mathbb{Z}_p/(p))$. Indeed, suppose $A \equiv B \mod p$. Then AB^{-1} belongs to G, so it has finite order, and $AB^{-1} \equiv I_n \mod p$. We will show $AB^{-1} = I_n$, so A = B, by using a norm on p-adic matrices.

For each $n \times n$ matrix $X = (x_{ij})$ in $M_n(\mathbf{Q}_p)$, define its *p*-adic matrix norm to be the maximum *p*-adic absolute value of the entries:

$$||X||_p := \max_{i,j} |x_{ij}|_p.$$

Thus $M_n(\mathbf{Z}_p) = \{X \in M_n(\mathbf{Q}_p) : ||X||_p \le 1\}$. Check that (i) $||X+Y||_p \le \max(||X||_p, ||Y||_p)$, (ii) $||XY||_p \le ||X||_p ||Y||_p$, and (iii) $||aX||_p = |a|_p ||X||_p$ for a in \mathbf{Q}_p and p-adic matrices X

4

and Y. Often $||XY||_p \neq ||X||_p ||Y||_p$, but the inequality (ii) will be sufficient for us. It implies, for instance, that $||X^k||_p \leq ||X||_p^k$ for all $k \geq 1$. By (i), when $X \neq Y$, $||X \pm Y||_p = \max(||X||_p, ||Y||_p)$.

For p > 2 and $x \in 1 + p\mathbf{Z}_p$, $|x^m - 1|_p = |m|_p |x - 1|_p$ for all $m \ge 1$: see Appendix B. The same equation holds for matrices: if $X \in I_n + p\mathbf{M}_n(\mathbf{Z}_p)$ (that is, $||X - I_n||_p \le 1/p$), then $||X^m - I_n||_p = |m|_p ||X - I_n||_p$ for all $m \ge 1$: see Appendix B. Returning to the matrices Aand B in G such that $A \equiv B \mod p$, where $p > p_0$ (so p > 2), we have for all $m \ge 1$ that $AB^{-1} \equiv I_n \mod p \Longrightarrow AB^{-1} \in I_n + p\mathbf{M}_n(\mathbf{Z}_p) \Longrightarrow ||(AB^{-1})^m - I_n||_p = |m|_p ||AB^{-1} - I_n||_p$. In the last equation, let m be the (finite!) order of AB^{-1} in G. Then $0 = |m|_p ||AB^{-1} - I_n||_p$.

Thus $||AB^{-1} - I_n||_p = 0$, so $AB^{-1} - I_n = O$, from which we get A = B. We have shown the mod p reduction $G \to \operatorname{GL}_n(\mathbf{Z}_p/(p))$ is injective for $p > p_0$, so |G|

divides $|\operatorname{GL}_n(\mathbf{Z}_p/(p))| = |\operatorname{GL}_n(\mathbf{Z}/(p))|$. This completes the proof of the claim. Rewrite $|\operatorname{GL}_n(\mathbf{Z}/(p))|$ in Lemma 3.4 by factoring out the largest power of p:

$$(p^{n}-1)(p^{n}-p)\cdots(p^{n}-p^{n-1}) = (p^{n}-1)p(p^{n-1}-1)\cdots p^{n-1}(p-1)$$
$$= p^{1+\dots+n-1}(p^{n}-1)(p^{n-1}-1)\cdots(p-1)$$
$$= p^{n(n-1)/2}(p^{n}-1)(p^{n-1}-1)\cdots(p-1).$$

To bound |G|, pick a prime q. We will get an upper bound $e_n(q)$ for $\operatorname{ord}_q(|G|)$ and find $e_n(q) = 0$ if q > n + 1, so |G| divides $\prod_{q \le n+1} q^{e_n(q)}$, where the product runs over primes less than or equal to n + 1. (Recall the examples of finite subgroups of $\operatorname{GL}_2(\mathbf{Q})$ earlier had order divisible only 2 and 3, which are less than or equal to n + 1 = 3 in this case.)

For prime $p > p_0$, $\operatorname{ord}_q(|G|) \leq \operatorname{ord}_q(|\operatorname{GL}_n(\mathbf{Z}/(p))|)$. If $p \neq q$ then by (3.1)

$$\operatorname{ord}_q(|\operatorname{GL}_n(\mathbf{Z}/(p))|) \le \operatorname{ord}_q((p^n - 1)(p^{n-1} - 1)\cdots(p - 1)) = \sum_{i=1}^{n-1} \operatorname{ord}_q(p^i - 1).$$

We will choose for p a large prime different from q that makes $\operatorname{ord}_q(p^i-1)$ easy to calculate.

If $q \neq 2$ then $(\mathbf{Z}/(q^k))^{\times}$ is cyclic for all $k \geq 1$. An integer that is a generator of $(\mathbf{Z}/(q^2))^{\times}$ is also a generator of $(\mathbf{Z}/(q^k))^{\times}$ for all $k \geq 1$ by Corollary 2.1. Let $b \mod q^2$ generate $(\mathbf{Z}/(q^2))^{\times}$, so $(b,q^2) = 1$. We will now use a famous theorem of Dirichlet about primes in arithmetic progression: if a and m are relatively prime integers then there are infinitely many primes $p \equiv a \mod m$.

By Dirichlet's theorem, there are infinitely many primes $p \equiv b \mod q^2$. Choose such a prime p with $p > p_0$. Necessarily $p \neq q$ since $(p, q^2) = (b, q^2) = 1$. The number $\operatorname{ord}_q(p^i - 1)$ is the largest integer k that makes $q^k \mid (p^i - 1)$, or equivalently that makes $p^i \equiv 1 \mod q^k$. Since $p \mod q^k$ generates $(\mathbf{Z}/(q^k))^{\times}$,

(3.2)
$$q^k \mid (p^i - 1) \Longleftrightarrow p^i \equiv 1 \mod q^k \Longleftrightarrow q^{k-1}(q-1) \mid i.$$

From the equivalence of the first and third relations in (3.2) we can start counting.

- The number of $p^i 1$ with $1 \le i \le n$ that are divisible by q is the number of multiples of q 1 up to n, and that number is $\lfloor n/(q-1) \rfloor$.
- The number of $p^i 1$ with $1 \le i \le n$ that are divisible by q^2 is the number of multiples of q(q-1) up to n, and that number is $\lfloor n/(q(q-1)) \rfloor$.
- The number of $p^i 1$ with $1 \le i \le n$ that are divisible by q^3 is the number of multiples of $q^2(q-1)$ up to n, and that number is $\lfloor n/(q^2(q-1)) \rfloor$.

KEITH CONRAD

• For each $k \ge 1$, the number of $p^i - 1$ with $1 \le i \le n$ that are divisible by q^k is the number of multiples of $q^{k-1}(q-1)$ up to n, and that number is $\lfloor n/(q^{k-1}(q-1)) \rfloor$.

Putting this all together, if q is prime and $p \mod q^2$ generates $(\mathbf{Z}/(q^2))^{\times}$ then the multiplicity of q in $|\operatorname{GL}_n(\mathbf{Z}/(p))|$ is

$$(3.3) e_n(q) := \left\lfloor \frac{n}{q-1} \right\rfloor + \left\lfloor \frac{n}{q(q-1)} \right\rfloor + \left\lfloor \frac{n}{q^2(q-1)} \right\rfloor + \dots = \sum_{j\geq 0} \left\lfloor \frac{n}{q^j(q-1)} \right\rfloor$$

This formally infinite series is really finite because the *j*-th term is 0 once $q^j(q-1) > n$. In particular, if q > n + 1 then q - 1 > n and all terms in the sum vanish. Thus q does not divide |G| if q > n + 1, so the only possible odd prime factors of |G| are primes up to n + 1, and the highest power of q dividing |G| is at most $q^{e_n(q)}$.

When $\lfloor q = 2 \rfloor$ a similar analysis can be made with Dirichlet's theorem for modulus 8 (not for modulus $4 = 2^2$, as the case of odd q might suggest), but it is a more involved since the groups $(\mathbf{Z}/(2^k))^{\times}$ for $k \geq 3$ are not cyclic but only "half-cyclic": there's a cyclic subgroup filling up half the group. Without getting into details (see [5, Sect. 1.3.4]), this implies $\operatorname{ord}_2(|G|)$ is bounded above by the same formula as (3.3) when q = 2, that is, by

$$e_n(2) := \sum_{j \ge 0} \left\lfloor \frac{n}{2^j} \right\rfloor,$$

Putting everything together, each finite subgroup of $GL_n(\mathbf{Q})$ divides the integer

$$M(n) = \prod_{q} q^{e_n(q)} = \prod_{q \le n+1} q^{e_n(q)}$$

where $e_n(q)$ is given by (3.3) for all primes q.

The table below gives some sample values.

For each prime q the exponent $e_n(q)$ in M(n) is optimal in the sense that there does exist a subgroup of $\operatorname{GL}_n(\mathbf{Q})$ of order $q^{e_n(q)}$ [1, pp. 392-394], [5, Sect. 1.4].

Remark 3.5. The largest possible order of a finite subgroup of $GL_n(\mathbf{Q})$ is $2^n n!$ except when n = 2, 4, 6, 7, 8, 9, and 10, and for every n (no exceptions) the subgroups of $GL_n(\mathbf{Q})$ with maximal order are conjugate. See [3].

Appendix A. Cyclicity of
$$(\mathbf{Z}/(p))^{\times}$$

To prove $(\mathbf{Z}/(p))^{\times}$ is cyclic for each prime p, we can suppose p > 2. We are going to use the prime factorization of p-1. Say

$$p - 1 = q_1^{e_1} q_2^{e_2} \cdots q_m^{e_m},$$

where the q_i are distinct primes and $e_i \ge 1$. We will show $(\mathbf{Z}/(p))^{\times}$ has elements of order $q_i^{e_i}$ for each *i* and their product furnishes a generator of $(\mathbf{Z}/(p))^{\times}$.

As a warm-up, let's show for each prime q dividing p-1 that there is an element of order q in $(\mathbf{Z}/(p))^{\times}$. While this a consequence of Cauchy's theorem for all finite groups, abelian or nonabelian, we want to give a proof that uses a special feature of $(\mathbf{Z}/(p))^{\times}$: it is the nonzero elements of the field $\mathbf{Z}/(p)$.

Lemma A.1. If a prime q divides p-1 then $(\mathbf{Z}/(p))^{\times}$ has an element of order q. Specifically, $a^{(p-1)/q} \neq 1$ for some $a \in (\mathbf{Z}/(p))^{\times}$, and necessarily $a^{(p-1)/q}$ has order q in $(\mathbf{Z}/(p))^{\times}$.

Proof. The polynomial $x^{(p-1)/q} - 1$ has at most (p-1)/q roots in $\mathbf{Z}/(p)$ since $\mathbf{Z}/(p)$ is a field, and (p-1)/q is less than $p-1 = |(\mathbf{Z}/(p))^{\times}|$. Thus $(\mathbf{Z}/(p))^{\times}$ has an element a such that $a^{(p-1)/q} \neq 1$ in $(\mathbf{Z}/(p))^{\times}$.

Set $b = a^{(p-1)/q}$ in $(\mathbf{Z}/(p))^{\times}$. Then $b \neq 1$ and $b^q = (a^{(p-1)/q})^q = a^{p-1} = 1$ in $(\mathbf{Z}/(p))^{\times}$ by Fermat's little theorem, so the order of b in $(\mathbf{Z}/(p))^{\times}$ divides q and is not 1. Since q is prime, the only choice for the order of b in $(\mathbf{Z}/(p))^{\times}$ is q.

That proof is *not* saying that if $a \in (\mathbf{Z}/(p))^{\times}$ and $a^{(p-1)/q} \neq 1$ in $(\mathbf{Z}/(p))^{\times}$ then a has order q in $(\mathbf{Z}/(p))^{\times}$, but rather that $a^{(p-1)/q}$ has order q in $(\mathbf{Z}/(p))^{\times}$.

Example A.2. Take p = 19. By Fermat's little theorem, all a in $(\mathbf{Z}/(19))^{\times}$ satisfy $a^{18} = 1$. Since 18 is divisible by 3, the lemma is telling us that whenever $a^{18/3} \neq 1$, $a^{18/3}$ has order 3. From the second row of the table below, which runs over the nonzero numbers mod 19, we find 2 different values of $a^6 \mod 19$ other than 1: 7 and 11. They both have order 3.

$a \bmod 19$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$a^6 \mod 19$	1	7	7	11	7	11	1	1	11	11	1	1	11	7	11	7	7	1

If a prime q divides p-1 more than once, then the same reasoning as in Lemma A.1 leads to elements of higher q-power order in $(\mathbf{Z}/(p))^{\times}$.

Lemma A.3. If q is a prime and $q^e \mid (p-1)$ for a positive integer e, then there is an element of $(\mathbf{Z}/(p))^{\times}$ with order q^e . Specifically, there is an $a \in (\mathbf{Z}/(p))^{\times}$ such that $a^{(p-1)/q} \neq 1$ in $(\mathbf{Z}/(p))^{\times}$, and necessarily $a^{(p-1)/q^e}$ has order q^e in $(\mathbf{Z}/(p))^{\times}$.

Proof. As in the proof of Lemma A.1, there are fewer than p-1 solutions to $a^{(p-1)/q} = 1$ in $\mathbf{Z}/(p)$ since $\mathbf{Z}/(p)$ is a field, so there is an a in $(\mathbf{Z}/(p))^{\times}$ where $a^{(p-1)/q} \neq 1$ in $\mathbf{Z}/(p)$.

Set $b = a^{(p-1)/q^e}$ in $\mathbf{Z}/(p)$, which makes sense since q^e is a factor of p-1 (we are not using fractional exponents). Then $b^{q^e} = (a^{(p-1)/q^e})^{q^e} = a^{p-1} = 1$ in $(\mathbf{Z}/(p))^{\times}$ by Fermat's little theorem, so the order of b in $(\mathbf{Z}/(p))^{\times}$ divides q^e . Since q is prime, the (positive) factors of q^e other than q^e are factors of q^{e-1} . Since $b^{q^{e-1}} = (a^{(p-1)/q^e})^{q^{e-1}} = a^{(p-1)/q} \neq 1$ in $(\mathbf{Z}/(p))^{\times}$, by the choice of a, the order of b in $(\mathbf{Z}/(p))^{\times}$ does not divide q^{e-1} . Thus the order of b in $(\mathbf{Z}/(p))^{\times}$ must be q^e .

Example A.4. Returning to p = 19, the number p - 1 = 18 is divisible by the prime power 9. In the table below we list the *a* for which $a^{(p-1)/3} = a^6 \neq 1$ and below that list the corresponding values of $a^{18/9} = a^2$: these are 4, 5, 6, 9, 16, and 17, and all have order 9.

$a \mod 19$	2	3	4	5	6	9	10	13	14	15	16	17
$a^6 \mod 19$	7	$\overline{7}$	11	7	11	11	11	11	$\overline{7}$	11	$\overline{7}$	7
$a^2 \mod 19$	4	9	16	6	17	5	5	17	6	16	9	4

Remark A.5. Lemma A.3 can be proved in another way using unique factorization of polynomials with coefficients in $\mathbf{Z}/(p)$. Because all nonzero numbers mod p are roots of $T^{p-1}-1$, this polynomial factors mod p as $(T-1)(T-2)\cdots(T-(p-1))$. Being a product of distinct linear factors, every factor of $T^{p-1}-1$ is also a product of distinct linear factors, so in particular, every factor of $T^{p-1}-1$ has as many roots in $\mathbf{Z}/(p)$ as its degree. For a prime power q^e dividing p-1, $T^{q^e}-1$ divides $T^{p-1}-1$, so there are q^e solutions of $a^{q^e}=1$ in $\mathbf{Z}/(p)$. This exceeds the number of solutions of $a^{q^{e-1}}=1$ in $\mathbf{Z}/(p)$, which is at most q^{e-1}

KEITH CONRAD

since a nonzero polynomial over a field has no more roots than its degree. Therefore there is an a in $\mathbf{Z}/(p)$ fitting $a^{q^e} = 1$ and $a^{q^{e-1}} \neq 1$. All such a have order q^e in $(\mathbf{Z}/(p))^{\times}$.

Theorem A.6. For each prime p, the group $(\mathbf{Z}/(p))^{\times}$ is cyclic.

Proof. We may take p > 2, so p - 1 > 1. Write p - 1 as a product of primes:

$$p - 1 = q_1^{e_1} q_2^{e_2} \cdots q_m^{e_m}.$$

By Lemma A.3, for each *i* from 1 to *m* there is $b_i \in (\mathbf{Z}/(p))^{\times}$ with order $q_i^{e_i}$. These orders are relatively prime, and $(\mathbf{Z}/(p))^{\times}$ is abelian, so the product of the b_i 's in $(\mathbf{Z}/(p))^{\times}$ has order equal to the product of the $q_i^{e_i}$'s, which is p-1. Thus, $b_1b_2\cdots b_m$ generates $(\mathbf{Z}/(p))^{\times}$. \Box

Appendix B. Computing $|b^m - 1|_p$ and $||B^m - I_n||_p$

The two theorems we prove here were used in the proofs of Theorems 1.1, 2.3, and 3.1.

Theorem B.1. Let p be prime. When p > 2 and $b \in 1 + p\mathbf{Z}_p$,

$$b^m - 1|_p = |m|_p |b - 1|_p$$

for $m \ge 1$. When p = 2 and $b \in 1 + 4\mathbb{Z}_2$, $|b^m - 1|_2 = |m|_2|b - 1|_2$ for $m \ge 1$.

Proof. We will present the case p > 2 and leave the case p = 2 to the reader.

That $|b^m - 1|_p = |m|_p |b - 1|_p$ for all $m \ge 1$ follows from the cases (p, m) = 1 and m = p:

$$(p,m) = 1 \Longrightarrow |b^m - 1|_p = |b - 1|_p$$
 and $|b^p - 1|_p = \frac{1}{p}|b - 1|_p$

implies $|b^{p^k} - 1|_p = (1/p^k)|b - 1|_p$ for $k \ge 0$ by induction, and then write a general positive integer m as $p^k m'$ where $k \ge 0$ and $p \nmid m'$ to get (with $b^{m'}$ in place of b sometimes)

$$|b^m - 1|_p = |(b^{m'})^{p^k} - 1|_p = \frac{1}{p^k}|b^{m'} - 1|_p = \frac{1}{p^k}|b - 1|_p = |m|_p|b - 1|_p.$$

<u>Case 1</u>: (p,m) = 1.

To prove $|b^m - 1|_p = |b - 1|_p$, we can assume $b \neq 1$ and $m \geq 2$ since it is obvious when b = 1 or m = 1. Set c = b - 1, so

$$b^m - 1 = (1+c)^m - 1 = mc + \sum_{k=2}^m \binom{m}{k} c^k.$$

We have $|mc|_p = |c|_p = |b-1|_p$. Since $0 < |c|_p \le 1/p$, $|\sum_{k=2}^m {m \choose k} c^k|_p \le \max_{2\le k\le m} |c|_p^k = |c|_p^2 < |c|_p = |b-1|_p$ (the last inequality would not be correct if c = 0). Thus

$$|b^m - 1|_p = |b - 1|_p.$$

 $\underline{\text{Case } 2}: m = p.$

To prove $|b^p - 1|_p = (1/p)|b - 1|_p$, as in Case 1 we can assume $b \neq 1$. Set c = b - 1, so

$$b^{p} - 1 = (1 + c)^{p} - 1 = pc + \sum_{k=2}^{p} {p \choose k} c^{p}$$

We have $|pc|_p = (1/p)|c|_p = (1/p)|b-1|_p$. Since $0 < |c|_p \le 1/p$, if $2 \le k \le p-1$ (there are such k since p > 2), then $p \mid {p \choose k}$, so $|{p \choose k}c^k|_p \le (1/p)|c|_p^k \le (1/p)|c|_p^2 < (1/p)|c|_p = (1/p)|b-1|_p$. Also $|{p \choose p}c^p|_p = |c|_p^p \le |c|_p^3 \le (1/p)|c|_p^2 < (1/p)|c|_p = (1/p)|b-1|_p$, so

$$|b^p - 1|_p = \frac{1}{p}|b - 1|_p.$$

Theorem B.2. Let p be prime. When p > 2 and $B \in 1 + p M_n(\mathbf{Z}_p)$

$$||B^m - I_n||_p = |m|_p ||B - I_n||_p$$

for $m \ge 1$. When p = 2 and $B \in 1 + 4 \operatorname{M}_n(\mathbb{Z}_2)$, $||B^m - I_n||_2 = |m|_2||B - I_n||_2$ for $m \ge 1$.

When this was used in the proof of Theorem 3.1, we did not need the case p = 2.

Proof. It is left to the reader to check the proof of Theorem B.1 still works in the matrix setting, using $||XY||_p \leq ||X||_p ||Y||_p$ with *p*-adic matrices instead of $|xy|_p = |x|_p |y|_p$ with *p*-adic numbers and using $||aX||_p = |a|_p ||X||$ for *p*-adic scalars *a* and matrices *X*. Even though matrix multiplication is not usually commutative, we can use the binomial theorem to expand $(I_n + B)^m$ just as with $(1 + b)^m$ since I_n and *B* commute.

Appendix C. The order of $\operatorname{GL}_n(\mathbf{Z}/(p))$

To compute $|\operatorname{GL}_n(\mathbf{Z}/(p))|$ in Lemma 3.4, view the columns of a matrix in $\operatorname{M}_n(\mathbf{Z}/(p))$ as an ordered list of *n* elements of $(\mathbf{Z}/(p))^n$. The matrix is invertible if and only if the columns are a basis of $(\mathbf{Z}/(p))^n$. In an *n*-dimensional vector space, *n* vectors are a basis if and only if they are linearly independent, so count how many ordered lists of *n* vectors in $(\mathbf{Z}/(p))^n$ are linearly independent. Every set of linearly independent vectors in $(\mathbf{Z}/(p))^n$ can be extended to a basis, so we can build up elements of $\operatorname{GL}_n(\mathbf{Z}/(p))$ column by column.

- (1) The first column can be anything in $(\mathbf{Z}/(p))^n$ but the zero vector, since every nonzero vector can be extended to a basis. Therefore the first column has $p^n 1$ choices.
- (2) Having picked the first column, the second column can be an arbitrary vector in $(\mathbf{Z}/(p))^n$ that is linearly independent of the first column: such a choice makes the first two columns linearly independent and every pair of linearly independent vectors in $(\mathbf{Z}/(p))^n$ can be extended to a basis (if $n \ge 2$). Since the first column has p scalar multiples, the second column has $p^n p$ choices.
- (3) The third column (if $n \ge 3$) has to be chosen linearly independently of the first two, which span a 2-dimensional subspace of $(\mathbf{Z}/(p))^n$, so the third column has $p^n - p^2$ choices and every such choice is allowed since a set of 3 linearly independent vectors in $(\mathbf{Z}/(p))^n$ can be extended to a basis (if $n \ge 3$).

The process continues, with the *j*th column being anything outside the span of the first j-1 columns, so the *j*th column has $p^n - p^{j-1}$ choices. We are done when j = n, so $|\operatorname{GL}_n(\mathbf{Z}/(p))| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1}).$

References

- [1] N. Bourbaki, "Lie Groups and Lie Algebras, Chapters 1-3," Springer-Verlag, 1998.
- [2] J. W. S. Cassels, "Local Fields," Cambridge Univ. Press, Cambridge, 1986.
- [3] S. Friedland, The maximal orders of finite subgroups of $GL_n(\mathbf{Q})$, Proc. Amer. Math. Soc. **125** (1997), 3519–3526.
- [4] H. Minkowski, Zur Theorie der positiven quadratische Formen, J. reine angew. Math. 101 (1887), 196– 202.
- [5] J-P. Serre, Bounds for the orders of the finite subgroups of G(k), in: "Group Representation Theory," EPFL Press (2007), 405–450, URL https://arxiv.org/pdf/1011.0346.pdf.