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1. Introduction

For an integer m ≥ 2, write (Z/(m))× for the units modulo m: these are the numbers mod
m with multiplicative inverses. We have a mod m ∈ (Z/(m))× if and only if gcd(a,m) = 1.
When m is a prime power pk with k ≥ 1, the units modulo pk are all residues mod pk besides
the multiples of p, since being relatively prime to pk is the same as not being divisible by
p. Therefore

|(Z/(pk))×| = |{0, 1, 2, . . . , pk − 1}− {0, p, 2p, 3p, . . . , (pk − 1)p}| = pk − pk−1 = pk−1(p− 1).

A fundamental result in number theory, going back to Gauss, is that the group (Z/(p))×

is cyclic for every prime p: there is an element of (Z/(p))× with order p− 1. When p is an
odd prime, there is a similar result for powers of p.

Theorem 1.1. For an odd prime p and integer k ≥ 2, the group (Z/(pk))× is cyclic.

This is false for 2k when k ≥ 3, e.g. (Z/(8))× = {1, 3, 5, 7 mod 8} has order 4 and each
unit modulo 8 squares to 1, so no unit modulo 8 has order 4.

A proof that all groups (Z/(p))× are cyclic is in Appendix A. Building on that, we
will show how to prove Theorem 1.1 using p-adic numbers. Then, using p-adic numbers in
another way, we will apply Theorem 1.1 to compute a bound on the order of finite subgroups
of GLn(Q) in terms of n (Theorem 3.1).

2. The groups (Z/(pk))× are cyclic

We will prove Theorem 1.1 by using a Teichmüller representative to lift a generator of
(Z/(p))× multiplicatively into the p-adics.

Proof. By Theorem A.6, (Z/(p))× is cyclic. Let a generator of it be g mod p and let ω(g) ∈
Z×p be the Teichmuller representative for g, so ω(g)p−1 = 1 and ω(g) ≡ g mod p .

Integers modulo pk and p-adic integers modulo pk amount to the same thing. In the
language of algebra, Z/(pk) and Zp/(p

k) are isomorphic rings in a natural way.

We are going to show the product (1 + p)ω(g) is a generator of (Z/(pk))× for all k. That
is, if a is an integer such that a ≡ (1 + p)ω(g) mod pk then a mod pk generates (Z/(pk))×.

Since (Z/(pk))× has size pk−1(p− 1), it suffices to prove ((1 + p)ω(g))m ≡ 1 mod pk only
if m is divisible by pk−1(p− 1).

Congruences mod pk remain valid as congruences mod p, so

((1 + p)ω(g))m ≡ 1 mod pk =⇒ ((1 + p)ω(g))m ≡ 1 mod p =⇒ gm ≡ 1 mod p,

so (p− 1) | m since g mod p is a generator of (Z/(p))×. Thus

((1 + p)ω(g))m = (1 + p)mω(g)m = (1 + p)m,
1



2 KEITH CONRAD

so

((1 + p)ω(g))m ≡ 1 mod pk =⇒ (1 + p)m ≡ 1 mod pk =⇒ |(1 + p)m − 1|p ≤
1

pk
.

For m ∈ Z+ and b ∈ 1 + pZp, we have |bm − 1|p = |m|p|b − 1|p when p 6= 2: see Appendix
B. Taking b = 1 + p,

|(1 + p)m − 1|p = |m|p|(1 + p)− 1|p =
|m|p
p
.

Therefore |(1 + p)m − 1|p ≤ 1/pk =⇒ |m|p/p ≤ 1/pk =⇒ |m|p ≤ 1/pk−1 =⇒ pk−1 | m .

From (p− 1) | m and pk−1 | m we get pk−1(p− 1) | m since p− 1 and pk−1 are relatively
prime. That completes the proof. �

Corollary 2.1. If p is an odd prime and a mod p2 is a generator of (Z/(p2))× then a mod pk

is a generator of (Z/(pk))× for all k ≥ 2.

Proof. In Z×p set a = ω(a)u, where ω(a) is the Teichmuller representative of a, so u ∈ 1+pZp

(since a ≡ ω(a) mod p).
Claim: ω(a) has order p− 1 and |u− 1|p = 1/p (i.e., u ∈ 1 + pZp and u 6∈ 1 + p2Zp).
Proof of claim: Let d ≥ 1 be the order of a mod p, so d | (p − 1). We want to prove

d = p− 1. From ad ≡ 1 mod p, raising both sides to the pth power gives us adp ≡ 1 mod p2

with the modulus “improved” to p2.1 Therefore p(p − 1) | dp, so (p − 1) | d. We noted
earlier that d | (p − 1) too, so d = p − 1. The order of a mod p and ω(a) are the same, so
ω(a) has order p− 1.

Since |u − 1|p ≤ 1/p, if |u − 1|p 6= 1/p then |u − 1|p ≤ 1/p2, so u ≡ 1 mod p2. Then
a = ω(a)u ≡ ω(a) mod p2, so ap−1 ≡ ω(a)p−1 ≡ 1 mod p2, which contradicts a mod p2

being a generator of (Z/(p2))×. Thus |u− 1|p = 1/p. This finishes the proof of the claim.

When we proved in Theorem 1.1 that (1 + p)ω(g) mod pk has order (p − 1)pk−1, the
properties we used about g and 1+p were that g mod p has order p−1 and |(1+p)−1|p = 1/p.
Since ω(a) has order p − 1 and |u − 1|p = 1/p, the arguments used for (1 + p)ω(g) can be

applied word for word to uω(a) = a, so a mod pk generates (Z/(pk))× for all k ≥ 2. �

Remark 2.2. Here is a more conceptual description of what is going on in terms of p-adic
quotient groups. We can view (Zp/(p

k))× as an isomorphic group built from p-adic units:

(Z/(pk))× ∼= (Zp/(p
k))× ∼= Z×p /(1 + pkZp).

The second isomorphism arises because elements of (Zp/(p
k))× are represented by p-adic

units, and when u and v are p-adic units we have

u = v in Zp/(p
k)⇐⇒ u ∈ v + pkZp ⇐⇒

u

v
∈ 1 + pkZp ⇐⇒ u = v in Z×p /(1 + pkZp).

What makes Z×p /(1 + pkZp) a nice model for the multiplicative group (Z/(pk))× is that it
is an actual quotient of multiplicative groups. This can’t be done working in the integers
alone, where the only units are ±1.

Writing a = ω(a)u provides a direct product decomposition Z×p
∼= µp−1×(1+pZp), where

µp−1 is the (cyclic) group of (p− 1)th roots of unity in the p-adic integers. Thus

Z×p /(1 + pkZp) ∼= (µp−1 × (1 + pZp))/(1 + pkZp) ∼= µp−1 × (1 + pZp)/(1 + pkZp).

1In general for x and y in Zp, if x ≡ y mod p then xp ≡ yp mod p2. More generally, if x ≡ y mod pk then
xp ≡ yp mod pk+1.



PRIME POWERS UNITS AND FINITE SUBGROUPS OF GLn(Q) 3

We can figure out what the multiplicative quotient group (1 + pZp)/(1 + pkZp) looks like
concretely by using the p-adic logarithm to turn it into an additive quotient group. Since
p 6= 2, the function log : 1 + pZp → pZp is an isomorphism, and since the p-adic logarithm

is an isometry we get log(1 + pkZp) = pkZp. Thus

(1 + pZp)/(1 + pkZp)
log∼= pZp/(p

k) ∼= Zp/(p
k−1) ∼= Z/(pk−1 = cyclic group of order pk−1.

Therefore

(Z/(pk))× ∼= Z×p /(1 + pkZp) ∼= µp−1 × (1 + pZp)/(1 + pkZp) ∼= Z/(p− 1)× Z/(pk−1).

This is a direct product of cyclic groups of orders p−1 and pk−1, which are relatively prime,
so the direct product is also cyclic.

The structure of the group (Z/(2k))× can be studied similarly to the case of odd p, but
for k ≥ 3 these groups will turn out not to be cyclic. They are almost cyclic: there is a
cyclic subgroup of order equal to half the size of the group.

Theorem 2.3. For k ≥ 3, (Z/(2k))× = 〈−1, 5 mod 2k〉 = {±5j mod 2k : j ≥ 0}.

Proof. The group (Z/(2k))× has order 2k−1(2 − 1) = 2k−1. We will show 5 mod 2k has
order 2k−2. For m ∈ Z+ and b ∈ 1 + 4Z2 we have |bm− 1|2 = |m|2|b− 1|2: see Appendix B.
Therefore

5m ≡ 1 mod 2k ⇐⇒ |5m − 1|2 ≤
1

2k
⇐⇒ |m|2|5− 1|2 ≤

1

2k
⇐⇒ |m|2 ≤

1

2k−2
⇐⇒ 2k−2 | m,

so 5 mod 2k has order 2k−2. No power of 5 mod 2k is ever −1 mod 2k since 5 ≡ 1 mod 4
while −1 ≡ 3 mod 4. Therefore −1 mod 2k 6∈ 〈5 mod 2k〉, and since −1 mod 2k has order 2
the subgroup {±5j mod 2k : j ≥ 0} of (Z/(2k))× has order 2 · 2k−2 = 2k−1 = |(Z/(2k))×|,
which makes this subgroup equal to the whole group. �

Remark 2.4. We can explain the group structure of (Z/(2k))× by writing it as a quotient
group of Z×2 . Since Z×2 = {±1} × (1 + 4Z2), for k ≥ 2 we have

(Z/(2k))× ∼= (Z2/2
k)×

∼= Z×2 /(1 + 2kZ2)

∼= ({±1} × (1 + 4Z2))/(1 + 2kZ2)

∼= {±1} × (1 + 4Z2)/(1 + 2kZ2).

Using the 2-adic logarithm isomorphism 1 + 4Z2
∼= 4Z2, which is also an isometry, we get

(1 + 4Z2)/(1 + 2kZ2)
log∼= 4Z2/2

kZ2
∼= Z2/2

k−2 ∼= Z/(2k−2),

so (Z/(2k))× ∼= {±1} × Z/(2k−2).

3. Bounding finite subgroups of GLn(Q)

How large can a finite group of matrices be? If we allow matrix entries from the complex
numbers, or even the real numbers, then there is no upper bound in general. For example,
if d if a positive integer then a counterclockwise rotation by 2π/d radians in the plane R2

is represented by the matrix (
cos(2π/d) − sin(2π/d)
sin(2π/d) cos(2π/d)

)
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in GL2(R) that has order d, so GL2(R) contains finite subgroups of arbitrarily large order.
If we restrict the numbers in the matrices to be rational, however, then there is an upper

bound on how large a finite matrix group can be in terms of the size of the matrices. This
result is due to Minkowski [4]. Our argument is adapted from [2, Chap. 4, Sect. 2].

Theorem 3.1 (Minkowski, 1887). For each n ≥ 1 every finite subgroup of GLn(Q) has
order dividing a number M(n) that depends only on n.

For example, it turns out that M(2) = 24, so every finite subgroup of GL2(Q) has order
dividing 24 = 23 · 3. We are not claiming that there actually is a subgroup of GL2(Q) with
order 24. In fact the largest size is 12, but there are subgroups of order not dividing 12 and
those orders all divide 24 (see below for a subgroup of order 8).

Example 3.2. The matrix ( 0 −1
1 1 ) has order 6.

Example 3.3. Let r = ( 0 −1
1 0 ) and s = ( 1 0

0 −1 ). Then r has order 4, s has order 2, and

sr = r−1s, so the group 〈r, s〉 generated by r and s in GL2(Q) has order 8.

The proof of Theorem 3.1 will use the finite groups GLn(Z/(p)). Just as the symmetric
group Sn has order n! that is a product of n integers, the order of GLn(Z/(p)) has an
explicit formula that is a product of n terms.

Lemma 3.4. For each prime p, |GLn(Z/(p))| = (pn − 1)(pn − p) · · · (pn − pn−1).
Proof. See Appendix C. The proof is based on linear algebra over the field Z/(p). �

Now we prove Theorem 3.1.

Proof. Let G be a finite subgroup of GLn(Q). Since G contains only finitely many matrices,
and each rational number is in Zp for all large primes p, the matrices in G have entries in
Zp for all large p, so there is a prime p0 such that G ⊂ Mn(Zp) for all p > p0. We write
GLn(Zp) for the group of n × n matrices with Zp-entries that have inverses also with Zp-
entries; the condition for a matrix A ∈ Mn(Zp) to belong to GLn(Zp) is that detA ∈ Z×p .

If A ∈ GLn(Q) has finite order then detA ∈ Q× has finite order, so detA = ±1. Therefore
by Cramer’s rule for inverting matrices, G ⊂ GLn(Zp) for all p > p0.

Claim: For every prime p > p0, the order of G divides |GLn(Z/(p))|.
Proof of claim: We can view G inside GLn(Zp). Reducing matrix entries modulo p

sends each matrix A in GLn(Zp) to a matrix A in GLn(Zp/(p)), which can be regarded as

GLn(Z/(p)) by the natural identification of Zp/(p) with Z/(p). (We have A ∈ GLn(Zp/(p))

since detA = ±1 =⇒ detA 6≡ 0 mod p =⇒ detA 6= 0 in Z/(p).) Reduction GLn(Zp) →
GLn(Zp/(p)) is a group homomorphism.

The key point is that when p > p0, two matrices A and B in the finite group G can’t
reduce mod p to the same matrix in GLn(Zp/(p)). Indeed, suppose A ≡ B mod p. Then
AB−1 belongs to G, so it has finite order, and AB−1 ≡ In mod p. We will show AB−1 = In,
so A = B, by using a norm on p-adic matrices.

For each n × n matrix X = (xij) in Mn(Qp), define its p-adic matrix norm to be the
maximum p-adic absolute value of the entries:

||X||p := max
i,j
|xij |p.

Thus Mn(Zp) = {X ∈ Mn(Qp) : ||X||p ≤ 1}. Check that (i) ||X+Y ||p ≤ max(||X||p, ||Y ||p),
(ii) ||XY ||p ≤ ||X||p||Y ||p, and (iii) ||aX||p = |a|p||X||p for a in Qp and p-adic matrices X
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and Y . Often ||XY ||p 6= ||X||p||Y ||p, but the inequality (ii) will be sufficient for us. It

implies, for instance, that ||Xk||p ≤ ||X||kp for all k ≥ 1. By (i), when X 6= Y , ||X ± Y ||p =
max(||X||p, ||Y ||p).

For p > 2 and x ∈ 1 + pZp, |xm − 1|p = |m|p|x− 1|p for all m ≥ 1: see Appendix B. The
same equation holds for matrices: if X ∈ In + pMn(Zp) (that is, ||X − In||p ≤ 1/p), then
||Xm − In||p = |m|p||X − In||p for all m ≥ 1: see Appendix B. Returning to the matrices A
and B in G such that A ≡ B mod p, where p > p0 (so p > 2), we have for all m ≥ 1 that

AB−1 ≡ In mod p =⇒ AB−1 ∈ In + pMn(Zp) =⇒ ||(AB−1)m − In||p = |m|p||AB−1 − In||p.
In the last equation, let m be the (finite!) order of AB−1 in G. Then 0 = |m|p||AB−1−In||p.
Thus ||AB−1 − In||p = 0, so AB−1 − In = O, from which we get A = B.

We have shown the mod p reduction G → GLn(Zp/(p)) is injective for p > p0, so |G|
divides |GLn(Zp/(p))| = |GLn(Z/(p))|. This completes the proof of the claim.

Rewrite |GLn(Z/(p))| in Lemma 3.4 by factoring out the largest power of p:

(pn − 1)(pn − p) · · · (pn − pn−1) = (pn − 1)p(pn−1 − 1) · · · pn−1(p− 1)

= p1+···+n−1(pn − 1)(pn−1 − 1) · · · (p− 1)

= pn(n−1)/2(pn − 1)(pn−1 − 1) · · · (p− 1).(3.1)

To bound |G|, pick a prime q. We will get an upper bound en(q) for ordq(|G|) and find

en(q) = 0 if q > n + 1, so |G| divides
∏

q≤n+1 q
en(q), where the product runs over primes

less than or equal to n+ 1. (Recall the examples of finite subgroups of GL2(Q) earlier had
order divisible only 2 and 3, which are less than or equal to n+ 1 = 3 in this case.)

For prime p > p0, ordq(|G|) ≤ ordq(|GLn(Z/(p))|). If p 6= q then by (3.1)

ordq(|GLn(Z/(p))|) ≤ ordq((p
n − 1)(pn−1 − 1) · · · (p− 1)) =

n−1∑
i=1

ordq(p
i − 1).

We will choose for p a large prime different from q that makes ordq(p
i−1) easy to calculate.

If q 6= 2 then (Z/(qk))× is cyclic for all k ≥ 1. An integer that is a generator of

(Z/(q2))× is also a generator of (Z/(qk))× for all k ≥ 1 by Corollary 2.1. Let b mod q2

generate (Z/(q2))×, so (b, q2) = 1. We will now use a famous theorem of Dirichlet about
primes in arithmetic progression: if a and m are relatively prime integers then there are
infinitely many primes p ≡ a mod m.

By Dirichlet’s theorem, there are infinitely many primes p ≡ b mod q2. Choose such a
prime p with p > p0. Necessarily p 6= q since (p, q2) = (b, q2) = 1. The number ordq(p

i − 1)

is the largest integer k that makes qk | (pi − 1), or equivalently that makes pi ≡ 1 mod qk.
Since p mod qk generates (Z/(qk))×,

(3.2) qk | (pi − 1)⇐⇒ pi ≡ 1 mod qk ⇐⇒ qk−1(q − 1) | i.
From the equivalence of the first and third relations in (3.2) we can start counting.

• The number of pi − 1 with 1 ≤ i ≤ n that are divisible by q is the number of
multiples of q − 1 up to n, and that number is bn/(q − 1)c.
• The number of pi − 1 with 1 ≤ i ≤ n that are divisible by q2 is the number of

multiples of q(q − 1) up to n, and that number is bn/(q(q − 1))c.
• The number of pi − 1 with 1 ≤ i ≤ n that are divisible by q3 is the number of

multiples of q2(q − 1) up to n, and that number is bn/(q2(q − 1))c.
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• For each k ≥ 1, the number of pi − 1 with 1 ≤ i ≤ n that are divisible by qk is the
number of multiples of qk−1(q − 1) up to n, and that number is bn/(qk−1(q − 1))c.

Putting this all together, if q is prime and p mod q2 generates (Z/(q2))× then the multi-
plicity of q in |GLn(Z/(p))| is

(3.3) en(q) :=

⌊
n

q − 1

⌋
+

⌊
n

q(q − 1)

⌋
+

⌊
n

q2(q − 1)

⌋
+ · · · =

∑
j≥0

⌊
n

qj(q − 1)

⌋
.

This formally infinite series is really finite because the j-th term is 0 once qj(q− 1) > n. In
particular, if q > n + 1 then q − 1 > n and all terms in the sum vanish. Thus q does not
divide |G| if q > n+ 1, so the only possible odd prime factors of |G| are primes up to n+ 1,

and the highest power of q dividing |G| is at most qen(q).

When q = 2 a similar analysis can be made with Dirichlet’s theorem for modulus 8 (not

for modulus 4 = 22, as the case of odd q might suggest), but it is a more involved since the
groups (Z/(2k))× for k ≥ 3 are not cyclic but only “half-cyclic”: there’s a cyclic subgroup
filling up half the group. Without getting into details (see [5, Sect. 1.3.4]), this implies
ord2(|G|) is bounded above by the same formula as (3.3) when q = 2, that is, by

en(2) :=
∑
j≥0

⌊ n
2j

⌋
,

Putting everything together, each finite subgroup of GLn(Q) divides the integer

M(n) =
∏
q

qen(q) =
∏

q≤n+1

qen(q)

where en(q) is given by (3.3) for all primes q. �

The table below gives some sample values.

n 1 2 3 4 5 6 7
M(n) 2 24 48 5760 11520 2903040 5806080

For each prime q the exponent en(q) in M(n) is optimal in the sense that there does exist

a subgroup of GLn(Q) of order qen(q) [1, pp. 392-394], [5, Sect. 1.4].

Remark 3.5. The largest possible order of a finite subgroup of GLn(Q) is 2nn! except
when n = 2, 4, 6, 7, 8, 9, and 10, and for every n (no exceptions) the subgroups of GLn(Q)
with maximal order are conjugate. See [3].

Appendix A. Cyclicity of (Z/(p))×

To prove (Z/(p))× is cyclic for each prime p, we can suppose p > 2. We are going to use
the prime factorization of p− 1. Say

p− 1 = qe11 q
e2
2 · · · q

em
m ,

where the qi are distinct primes and ei ≥ 1. We will show (Z/(p))× has elements of order
qeii for each i and their product furnishes a generator of (Z/(p))×.

As a warm-up, let’s show for each prime q dividing p−1 that there is an element of order
q in (Z/(p))× . While this a consequence of Cauchy’s theorem for all finite groups, abelian
or nonabelian, we want to give a proof that uses a special feature of (Z/(p))×: it is the
nonzero elements of the field Z/(p).
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Lemma A.1. If a prime q divides p− 1 then (Z/(p))× has an element of order q. Specifi-

cally, a(p−1)/q 6= 1 for some a ∈ (Z/(p))×, and necessarily a(p−1)/q has order q in (Z/(p))×.

Proof. The polynomial x(p−1)/q − 1 has at most (p − 1)/q roots in Z/(p) since Z/(p) is a
field, and (p − 1)/q is less than p − 1 = |(Z/(p))×|. Thus (Z/(p))× has an element a such

that a(p−1)/q 6= 1 in (Z/(p))×.

Set b = a(p−1)/q in (Z/(p))×. Then b 6= 1 and bq = (a(p−1)/q)q = ap−1 = 1 in (Z/(p))×

by Fermat’s little theorem, so the order of b in (Z/(p))× divides q and is not 1. Since q is
prime, the only choice for the order of b in (Z/(p))× is q. �

That proof is not saying that if a ∈ (Z/(p))× and a(p−1)/q 6= 1 in (Z/(p))× then a has

order q in (Z/(p))×, but rather that a(p−1)/q has order q in (Z/(p))×.

Example A.2. Take p = 19. By Fermat’s little theorem, all a in (Z/(19))× satisfy a18 = 1.

Since 18 is divisible by 3, the lemma is telling us that whenever a18/3 6= 1, a18/3 has order
3. From the second row of the table below, which runs over the nonzero numbers mod 19,
we find 2 different values of a6 mod 19 other than 1: 7 and 11. They both have order 3.

a mod 19 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

a6 mod 19 1 7 7 11 7 11 1 1 11 11 1 1 11 7 11 7 7 1

If a prime q divides p − 1 more than once, then the same reasoning as in Lemma A.1
leads to elements of higher q-power order in (Z/(p))×.

Lemma A.3. If q is a prime and qe | (p−1) for a positive integer e, then there is an element

of (Z/(p))× with order qe. Specifically, there is an a ∈ (Z/(p))× such that a(p−1)/q 6= 1 in

(Z/(p))×, and necessarily a(p−1)/q
e

has order qe in (Z/(p))×.

Proof. As in the proof of Lemma A.1, there are fewer than p − 1 solutions to a(p−1)/q = 1
in Z/(p) since Z/(p) is a field, so there is an a in (Z/(p))× where a(p−1)/q 6= 1 in Z/(p).

Set b = a(p−1)/q
e

in Z/(p), which makes sense since qe is a factor of p − 1 (we are not

using fractional exponents). Then bq
e

= (a(p−1)/q
e
)q

e
= ap−1 = 1 in (Z/(p))× by Fermat’s

little theorem, so the order of b in (Z/(p))× divides qe. Since q is prime, the (positive)

factors of qe other than qe are factors of qe−1. Since bq
e−1

= (a(p−1)/q
e
)q

e−1
= a(p−1)/q 6= 1

in (Z/(p))×, by the choice of a, the order of b in (Z/(p))× does not divide qe−1. Thus the
order of b in (Z/(p))× must be qe. �

Example A.4. Returning to p = 19, the number p−1 = 18 is divisible by the prime power
9. In the table below we list the a for which a(p−1)/3 = a6 6= 1 and below that list the
corresponding values of a18/9 = a2: these are 4, 5, 6, 9, 16, and 17, and all have order 9.

a mod 19 2 3 4 5 6 9 10 13 14 15 16 17

a6 mod 19 7 7 11 7 11 11 11 11 7 11 7 7

a2 mod 19 4 9 16 6 17 5 5 17 6 16 9 4

Remark A.5. Lemma A.3 can be proved in another way using unique factorization of
polynomials with coefficients in Z/(p). Because all nonzero numbers mod p are roots of
T p−1− 1, this polynomial factors mod p as (T − 1)(T − 2) · · · (T − (p− 1)). Being a product
of distinct linear factors, every factor of T p−1− 1 is also a product of distinct linear factors,
so in particular, every factor of T p−1 − 1 has as many roots in Z/(p) as its degree. For a
prime power qe dividing p− 1, T qe − 1 divides T p−1− 1, so there are qe solutions of aq

e
= 1

in Z/(p). This exceeds the number of solutions of aq
e−1

= 1 in Z/(p), which is at most qe−1
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since a nonzero polynomial over a field has no more roots than its degree. Therefore there

is an a in Z/(p) fitting aq
e

= 1 and aq
e−1 6= 1. All such a have order qe in (Z/(p))×.

Theorem A.6. For each prime p, the group (Z/(p))× is cyclic.

Proof. We may take p > 2, so p− 1 > 1. Write p− 1 as a product of primes:

p− 1 = qe11 q
e2
2 · · · q

em
m .

By Lemma A.3, for each i from 1 to m there is bi ∈ (Z/(p))× with order qeii . These orders
are relatively prime, and (Z/(p))× is abelian, so the product of the bi’s in (Z/(p))× has order
equal to the product of the qeii ’s, which is p− 1. Thus, b1b2 · · · bm generates (Z/(p))×. �

Appendix B. Computing |bm − 1|p and ||Bm − In||p
The two theorems we prove here were used in the proofs of Theorems 1.1, 2.3, and 3.1.

Theorem B.1. Let p be prime. When p > 2 and b ∈ 1 + pZp,

|bm − 1|p = |m|p|b− 1|p
for m ≥ 1. When p = 2 and b ∈ 1 + 4Z2, |bm − 1|2 = |m|2|b− 1|2 for m ≥ 1.

Proof. We will present the case p > 2 and leave the case p = 2 to the reader.
That |bm − 1|p = |m|p|b− 1|p for all m ≥ 1 follows from the cases (p,m) = 1 and m = p:

(p,m) = 1 =⇒ |bm − 1|p = |b− 1|p and |bp − 1|p =
1

p
|b− 1|p

implies |bpk − 1|p = (1/pk)|b− 1|p for k ≥ 0 by induction, and then write a general positive

integer m as pkm′ where k ≥ 0 and p - m′ to get (with bm
′

in place of b sometimes)

|bm − 1|p = |(bm′)pk − 1|p =
1

pk
|bm′ − 1|p =

1

pk
|b− 1|p = |m|p|b− 1|p.

Case 1: (p,m) = 1.
To prove |bm − 1|p = |b − 1|p, we can assume b 6= 1 and m ≥ 2 since it is obvious when

b = 1 or m = 1. Set c = b− 1, so

bm − 1 = (1 + c)m − 1 = mc+
m∑
k=2

(
m

k

)
ck.

We have |mc|p = |c|p = |b − 1|p. Since 0 < |c|p ≤ 1/p, |
∑m

k=2

(
m
k

)
ck|p ≤ max2≤k≤m |c|kp =

|c|2p < |c|p = |b− 1|p (the last inequality would not be correct if c = 0). Thus

|bm − 1|p = |b− 1|p.
Case 2: m = p.
To prove |bp − 1|p = (1/p)|b− 1|p, as in Case 1 we can assume b 6= 1. Set c = b− 1, so

bp − 1 = (1 + c)p − 1 = pc+

p∑
k=2

(
p

k

)
cp.

We have |pc|p = (1/p)|c|p = (1/p)|b − 1|p. Since 0 < |c|p ≤ 1/p, if 2 ≤ k ≤ p − 1 (there

are such k since p > 2), then p |
(
p
k

)
, so |

(
p
k

)
ck|p ≤ (1/p)|c|kp ≤ (1/p)|c|2p < (1/p)|c|p =

(1/p)|b− 1|p. Also |
(
p
p

)
cp|p = |c|pp ≤ |c|3p ≤ (1/p)|c|2p < (1/p)|c|p = (1/p)|b− 1|p, so

|bp − 1|p =
1

p
|b− 1|p. �
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Theorem B.2. Let p be prime. When p > 2 and B ∈ 1 + pMn(Zp)

||Bm − In||p = |m|p||B − In||p
for m ≥ 1. When p = 2 and B ∈ 1 + 4 Mn(Z2), ||Bm − In||2 = |m|2||B − In||2 for m ≥ 1.

When this was used in the proof of Theorem 3.1, we did not need the case p = 2.

Proof. It is left to the reader to check the proof of Theorem B.1 still works in the matrix
setting, using ||XY ||p ≤ ||X||p||Y ||p with p-adic matrices instead of |xy|p = |x|p|y|p with
p-adic numbers and using ||aX||p = |a|p||X|| for p-adic scalars a and matrices X. Even
though matrix multiplication is not usually commutative, we can use the binomial theorem
to expand (In +B)m just as with (1 + b)m since In and B commute. �

Appendix C. The order of GLn(Z/(p))

To compute |GLn(Z/(p))| in Lemma 3.4, view the columns of a matrix in Mn(Z/(p)) as
an ordered list of n elements of (Z/(p))n. The matrix is invertible if and only if the columns
are a basis of (Z/(p))n. In an n-dimensional vector space, n vectors are a basis if and only if
they are linearly independent, so count how many ordered lists of n vectors in (Z/(p))n are
linearly independent. Every set of linearly independent vectors in (Z/(p))n can be extended
to a basis, so we can build up elements of GLn(Z/(p)) column by column.

(1) The first column can be anything in (Z/(p))n but the zero vector, since every nonzero
vector can be extended to a basis. Therefore the first column has pn − 1 choices.

(2) Having picked the first column, the second column can be an arbitrary vector in
(Z/(p))n that is linearly independent of the first column: such a choice makes the
first two columns linearly independent and every pair of linearly independent vectors
in (Z/(p))n can be extended to a basis (if n ≥ 2). Since the first column has p scalar
multiples, the second column has pn − p choices.

(3) The third column (if n ≥ 3) has to be chosen linearly independently of the first two,
which span a 2-dimensional subspace of (Z/(p))n, so the third column has pn − p2
choices and every such choice is allowed since a set of 3 linearly independent vectors
in (Z/(p))n can be extended to a basis (if n ≥ 3).

The process continues, with the jth column being anything outside the span of the first
j − 1 columns, so the jth column has pn − pj−1 choices. We are done when j = n, so
|GLn(Z/(p))| = (pn − 1)(pn − p) · · · (pn − pn−1).
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