OSTROWSKI'S THEOREM FOR Q
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1. INTRODUCTION

Hensel created the p-adic numbers towards the end of the 19th century, and it wasn’t
until about 20 years later that Ostrowski [1] proved a fundamental theorem that explained
in retrospect why Hensel’s idea was natural: every nontrivial absolute value on Q is a power
of the ordinary (archimedean) absolute value or a power of a p-adic absolute value for some
prime number p, so every completion of Q with respect to a nontrivial absolute value is
either R or some Q.

Theorem 1 (Ostrowski, 1916). If|-| is a nontrivial absolute value on Q then there ist > 0
such that either | - | = |- |, or |- | =|-|, for a prime p.
Proof. An absolute value on Q is determined by its values on the positive integers, so it
suffices to show there is a t > 0 such that |n| = n’ for all n in Z* or |n| = |n|!, for some
prime p and all n in Z7T.

Since | - | is nontrivial, |n| # 1 for some positive integer n. We consider two cases: |n| > 1
for some n > 2 or |n| <1 for all n > 2. We will show in the first case that |- | is a power of
the ordinary absolute value on Q and in the second case that |- | is a power of some p-adic
absolute value.

Case 1: |n| > 1 for some n > 2.

First we prove that |n| > 1 for all n > 2 by proving the contrapositive: if |ng| < 1 for
some ng > 2 then |n| <1 for all n > 2. Write n in base ng:

n:a0+a1n0+~-+adng
where 0 < a; < ng — 1 and aq # 0, song§n<ng+1. We have |a;| <[1+14---+1] <
1|+ 1|+ -+ |1] = a; < ng, so
(1) In| < |ao| + |axIno| + - - + |aal|nol* < no + nolnol + - - - + nolno|*.

From [ng| < 1, (1) implies [n| < no(d + 1) < ng(log,,(n) + 1) for all n > 2. Replace n by
n* in this inequality to get |n|* < ng(klog,,(n) + 1), so

(2) n] < {/no(klog,, (n) +1).

We have log, (n) > 0 since ng > 1 and n > 1, so letting k — oo in (2) shows us that
In| <1, and n was arbitrary.
The replacement of n with n* is an idea we will use again. Let’s call it the “power trick.”
For all integers m and n that are greater than 1, |m| > 1 and |n| > 1. Picking d > 0

such that m? < n < m!, writing n in base m implies (in the same way that we proved
(1) above)

In| <m(1+|m|+ -+ |m|%).
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Since |m| > 1, summing up the finite geometric series on the right gives us

d+1 _ 1 d+1
In| <m(l+|m|+- +|m?) = m|n’1‘ 1 < m|’m’| = |m’|m|1 Im)|?.
m| — m| — m| —
Since d < log,,(n),
’TL‘ < m|m| |m’10gm(n)
im[ —1

for all m > 2 and n > 2. Now it’s time for the power trick. Replacing n with n¥,

m|m|

Il < L e ),
Taking kth roots,

In| < & \Z”T'l |8 (m),
and letting k£ — oo,
3) ] < [m]n ),

Writing |m| = m® and |n| = n! where s > 0 and ¢t > 0, we get from (3) that n* < m?18m () =
n®, so t < s. The roles of m and n in this calculation are symmetric, so by switching their
roles we get s <t and thus |m| = m! and |n| = n’.

Case 2: |n| <1 for all n > 2.

For some n > 2 we have |n| # 1, so 0 < |n| < 1. Let p be the smallest such positive

integer. Since 0 < |p| < 1 and also 0 < 1/p < 1, we can write | |p| = (1/p)"| for some t > 0.

We will prove |n| = |nl}, for all n > 1.

The number p is prime, by contradiction: if p = ab where a and b are positive integers
that are both smaller than p then |a| =1 and |b] = 1, so |p| = |a||b] = 1, which is false.

Next we show each positive integer m not divisible by p has |m| = 1. If |m| # 1 then
|m| < 1. We are going to use the power trick again: let’s look at p* and mF. Since |p| and
|m| are both between 0 and 1, for a large k we have |p|* < 1/2 and |n|* < 1/2. Since p*
and m” are relatively prime, there are zj, and vy, € Z such that 1 = pFzj, + mFy;. Take the
absolute value of both sides:

1 1
1= o ol < [l + el < Il mlt < 52 =1
which is a contradiction.
For all integers n > 2 pull out the largest power of p: n = p®n’ where e > 0 and n’ is not
divisible by p. Then |n’| = 1, so |n| = [p®"/| = |p|¢|n/| = |p|¢ = (1/p)¢*. Also |n|, = (1/p)°,
so n| = |nl}. O

Here is a second proof that an absolute value |- | on Q such that |n| > 1 for some positive
integer n > 2 must be a power of the ordinary absolute value on Q.

First we show |2| > 1 by an argument very close to that used already in Case 1, but
we repeat it here to keep our argument self-contained. Assuming [2| < 1 we will get a
contradiction.
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Write each integer n > 2 in base 2: n =ag+a1 -2+ ---+ aq2® where a; is 0 or 1 and
ag =1, 50 2% <n < 291, Thus |a;| is 0 or 1, so by the triangle inequality
d ‘ d
o] <> aill2] <Y 1=d+1<logy(n) + 1 < 2logy(n).
i=0 i=0
This holds for all n > 2. Use the power trick: replacing n throughout with n* for k > 1,
n*| < 2logy(n*) = 2klogy(n),

SO
n|* < 2klog,(n).

In| < {/2klogy(n).

Letting k& — oo, this inequality becomes |n| < 1. We have proved this for all n > 2, but
that contradicts the assumption |n| > 1 for some n > 2, so in fact we must have |2| > 1.
Since |2| and 2 are both greater than 1, we can write |2| = 2! for some ¢ > 0. We will
prove |n| = n! for all n > 2 by proving |n| < n! (easier) and |n| > n' (trickier).
As done already, write each integer n > 1 in base 2: n=ag+ a1 -2+ ---+ aq2% with a;
equal to 0 or 1 and ag = 1, so 2¢ < n < 24t An upper bound on n follows easily from the
triangle inequality:

Taking kth roots of both sides,

ol < ool + 21+ a2 < 1+ 24+ = EEE
Replacing |2| by 2¢,
ot(d+1) _ 1 ot(d+1) ot ot
e T s Nk T EA e
It’s time to use the power trick again: replacing n in this inequality by n* with k& > 1,
In|* < 2! Lkt
2t —1

Taking kth roots of both sides implies

ot
In| < ¢/ nt.
2t —1

Letting k — oo (keeping n fixed), we get
(4) n] < nt
foralln € Z™T.
To prove the reverse inequality |n| > n! for n > 1, once again write n in base 2: n =

ao+ar -2+ -+ ag2¢ with a; =0 or 1 and ag = 1, so 2¢ < n < 291, Once again we use
the triangle inequality, but in a less obvious way:

‘2d+1’ _ |2d+1 o n—i—n\ < ’2d+l - TL‘ + ‘n‘

On the left side, [24+1| = |21 = 244+ On the right side, since 29t1 — n is a positive
integer we get [2971 — n| < (291 — n)? by (4), so

2t(d+1) < (2d+1 - n)t + ‘n‘
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From this we obtain a lower bound on |n|:
|TL| > 2t(d+1) _ (2d+1 _ n)t.

To decrease this lower bound we can increase 2971 — n: since n is between 2% and 24+, we
have 20+ —p < 2d+1 _9d — 9d 44

ot(d+1) o2t _ 1

|n’ > 2t(d+1) o 2td — (2t o 1)2td — (2t o 1) > > > nt'
This holds for all n > 1. One more time we will use the power trick: replacing n by n*
2t —1
|n|k > Tnkt.
Take kth roots to get
R/20—1

Letting k — oo, we get |n| > n'. Since we already showed |n| < n!, we have shown |n| = n
foralln € Z™.
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