
THE SPLITTING FIELD OF X3 − 5 OVER Q

KEITH CONRAD

In this note, we calculate all the basic invariants of the number field

K = Q(
3
√

5, ω),

where ω = (−1 +
√
−3)/2 is a primitive cube root of unity.

Here is the notation for the fields and Galois groups to be used. Let

k = Q(
3
√

5),

K = Q(
3
√

5, ω),

F = Q(ω) = Q(
√
−3),

G = Gal(K/Q) ∼= S3,

N = Gal(K/F ) ∼= A3,

H = Gal(K/k).

First we work out the basic invariants for the fields F and k.

Theorem 1. The field F = Q(ω) has ring of integers Z[ω], class number 1, discriminant
−3, and unit group {±1,±ω,±ω2}. The ramified prime 3 factors as 3 = −(

√
−3)2. For

p 6= 3, the way p factors in Z[ω] = Z[X]/(X2 +X + 1) is identical to the way X2 +X + 1
factors mod p, so p splits if p ≡ 1 mod 3 and p stays prime if p ≡ 2 mod 3.

We now turn to the field k. Its norm form is

Nk/Q(a+ b
3
√

5 + c
3
√

25) = a3 + 5b3 + 25c3 − 15abc.

Since disc(Z[ 3
√

5]) = −Nk/Q(3( 3
√

5)2) = −3352, only 3 and 5 can ramify in k. Since

X3 − 5 is Eisenstein at 5 and

(1) (X − 1)3 − 5 = X3 − 3X2 + 3X − 6

is Eisenstein at 3, both 3 and 5 are totally ramified. Therefore by the same local field
argument as in [2], Ok = Z[ 3

√
5], so disc(Ok) = −3352.

The factorization of 5 is 5Ok = ( 3
√

5)3. To factor 3, we use not (1) but a 3-Eisenstein
polynomial whose constant term is ±3:

(X − 2)3 + 5 = X3 − 6X2 + 12X − 3.

Let π
def
= 2− 3

√
5 be a root of this. Then

π3 = 3− 12π + 6π2

= 3(1− 4π + 2π2)

= 3(1− 4
3
√

5 + 2
3
√

25).

Since Nk/Q(π) = 3, v
def
= 1− 4 3

√
5 + 2 3

√
25 is a unit in Ok with norm 1 and 3 = π3/v.

Let

u
def
=

1

v
= 41 + 24

3
√

5 + 14
3
√

25,

1
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so 3 = π3u. We will show later that u is the fundamental unit of k. (For comparison, in
Q( 3
√

2, ω) we had 3 = π3v where v < 1 was the reciprocal of the fundamental unit.)
The minimal polynomial of v over Q is

m(T ) = T 3 − Trk/Q(v)T 2 + Trk/Q(u)T − 1 = T 3 − 3T 2 + 123T − 1,

and the minimal polynomial for u over Q is

T 3 − 123T 2 + 3T − 1.

It is not a surprise that m(T ) has a large linear coefficient, since m(0) = −Nk/Q(v) = −1
but m has a zero v ≈ .008 that is quite near 0, so m′(0) ought to be large, in fact around
(m(v) −m(0))/v = 1/v ≈ 1/.008 ≈ 122.9. Since the minimal polynomial for u has a root
mod 2, 2 | disc(Z[u]) so Z[u] 6= Ok. (In full, disc(Z[u]) = −263352132.)

To determine the class number of k, the Minkowski bound is

3!

33

(
4

π

)
3 · 5
√

3 =
40
√

3

3π
<

80

3π
<

27

π
< 9.

So we must factor 2,3,5,7. We already saw 3 and 5 have principal prime factorizations.
Since X3 − 5 is irreducible mod 7, (7) stays prime in Ok. Mod 2,

X3 − 5 ≡ X3 + 1 ≡ (X + 1)(X2 +X + 1).

So (2) = pq, where N p = 2 and N q = 4.
Seeking principal generators for p and q, we look for norms of elements divisible by 2.

From Nk/Q(1 + 3
√

5) = 6 we must have (1 + 3
√

5) = p(π), so we compute

1 + 3
√

5

π
=

1 + 3
√

5

2− 3
√

5
=

(1 + 3
√

5)(2− 3
√

5ω)(2− 3
√

5ω2)

3
= 3 + 2

3
√

5 +
3
√

25.

This is a generator for p, from which we get a generator for q:

(2) 2 = (3 + 2
3
√

5 +
3
√

25)(−1− 3
√

5 +
3
√

25).

Thus k has class number 1.
Let U > 1 be the fundamental unit of k. As in [2, Lemma 3], |disc(OK)|/4 < U3 + 7, so

U2 >

(
3352

4
− 7

)2/3

≈ 29.6.

Alas, this is not greater than u ≈ 122.9, so we can’t conclude that U2 > u, and hence that
U = u. Yet U = u is true. How can this be proven?

Theorem 2. The fundamental unit of k = Q( 3
√

5) is u = 41 + 24 3
√

5 + 14 3
√

25.

Proof. We use a technique taken from the tome of Delone and Faddeev on cubic fields [3,
pp. 88-92]. (For a table of cubic number field data, including fundamental units, see [3,
pp. 141-146]. For a list of fundamental units of pure cubic fields Q( 3

√
m) with m ≤ 250,

see [4].)
We will show u is a fundamental unit by showing u is not an jth power of an algebraic

integer in Ok for any j > 1.
Suppose u = ρj , where ρ3 + aρ2 + bρ + c = 0 for integers a, b, c. Since ρ must be some

power of the fundamental unit, c = −Nk/Q(ρ) = −1.
The key idea we’ll use is that symmetric functions in the Q-conjugates of u are symmetric

functions in the Q-conjugates of ρ, and hence are integral polynomials in a and b (since
c = −1 is known already). Studying such integral polynomials will impose conditions on
the coefficients a, b.
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We will denote the conjugates of u and ρ with prime notation, so

u+ u′ + u′′ = 123, uu′ + uu′′ + u′u′′ = 3, uu′u′′ = 1,

ρ+ ρ′ + ρ′′ = −a, ρρ′ + ρρ′′ + ρ′ρ′′ = b, ρρ′ρ′′ = −c = 1.

So if u = ρj then 123 = Trk/Q(ρj) = Fj(a, b) and 3 = Gj(a, b) for some Fj , Gj ∈ Z[X,Y ].
When j = 2 and 3 we can work with Fj and Gj directly. But for larger j that becomes too
cumbersome.

Let’s suppose u = ρ2. Then

123 = ρ2 + (ρ′)2 + (ρ′′)2 = (ρ+ ρ′ + ρ′′)2 − 2(ρρ′ + ρρ′′ + ρ′ρ′′) = a2 − 2b

and

3 = (ρρ′)2 + (ρρ′′)2 + (ρ′ρ′′)2 = b2 − 2ac = b2 + 2a.

Solving for a in terms of b and feeding that into the first equation,

123 =
(3− b2)2

4
− 2b⇒ b4 − 6b2 − 8b− 483 = 0.

Therefore b | 483 = 3 · 7 · 23, but none of the divisors is a root of the quartic polynomial.
So u is not a square.

Now suppose u = ρ3. In general,

x3 + y3 + z3 = (x+ y + z)3 − 3(x+ y + z)(xy + xz + yz) + 3(xyz).

Thus

123 = ρ3 + (ρ′)3 + (ρ′′)3 = −a3 + 3ab+ 3

and

3 = (ρρ′)3 + (ρρ′′)3 + (ρ′ρ′′)3 = b3 + 3ab+ 3.

The second equation says b = 0 or b2 = −3a. If b = 0, then 120 = −a3, which is impossible.
So b2 = −3a, hence

123 = b6/27− b3 + 3⇒ b6 − 27b3 − 27 · 120 = 0.

The roots of T 2 − 27T − 27 · 120 are 72 and −45; neither is a cube. So u is not a cube.
Now suppose u = ρp for an odd prime p. Then u± 1 is divisible by ρ± 1 in Ok, so in Z

(3) Nk/Q(ρ+ 1) | Nk/Q(u+ 1) = 128, Nk/Q(ρ− 1) | Nk/Q(u− 1) = 120.

Since ρ > 1, Nk/Q(ρ± 1) is positive. From the cubic polynomial satisfied by ρ,

(4) Nk/Q(ρ+ 1) = 1− a+ b− c = 2− a+ b, Nk/Q(ρ− 1) = −1− a− b− c = −a− b.
By the symmetric function theorem,

(5) 123 = ρp + (ρ′)p + (ρ′′)p = (ρ+ ρ′ + ρ′′)p + pA ≡ −ap mod p ≡ −a mod p

for some integer A, and similarly

(6) 3 ≡ (ρρ′ + ρρ′′ + ρ′ρ′′)p ≡ bp ≡ b mod p.

By (4), the divisibility relations (3) concern not a and b but 2− a+ b and −a− b. For odd
p, the congruences (5) and (6) are equivalent to

(7) 2− a+ b ≡ 128 mod p, −a− b ≡ 120 mod p.

Coupled with the conditions

(8) 2− a+ b, −a− b ∈ Z+, (2− a+ b) | 128, )− a− b) | 120,

we assemble a finite list of possibilities for 2 − a + b and for −a − b, along with the corre-
sponding possibilities for p:
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2− a+ b 1 2 4 8 16 32 64 128
p 127 2,3, 7 2, 31 2,3,5 2, 7 2, 3 2 arb.

−a− b 1 2 3 4 5 6 8 10
p 7, 17 2, 59 3, 13 2, 29 5, 23 2, 3, 19 2, 7 2, 5, 11

−a− b 12 15 20 24 30 40 60 120
p 2, 3 3, 5, 7 2, 5 2,3 2, 3, 5 2, 5 2, 3, 5 arb.

Larger primes appear less often (only 2, 3, 5, and 7 appear more than once), so we
consider primes from largest to smallest.

First, we handle the “arbitrary” case, when 2 − a + b = 128 and −a − b = 120. Then
a = −123, b = 3, so ρ is a root of T 3 − 123T 3 + 3T − 1, i.e. ρ = u. This is useless.

If p = 127 then 2−a+ b = 1 and −a− b = 120. There is no solution; 2−a+ b and −a− b
have the same parity. Similarly, there is no solution when p = 23, 17, 13.

If p = 59 then 2− a+ b = 128 and −a− b = 2, so a = −64, b = 62. We consider a root ρ
of the polynomial T 3 − 64T 2 + 62T − 1. If ρ ∈ Ok and u = ρj , then

u = ρj ⇒ Z[u] ⊂ Z[ρ] ⊂ Ok ⇒ 3352 | disc(Z[ρ]) | 263352132.

Neither of these divisibility relations holds, since T 3 − 64T 2 + 62T − 1 has discriminant
equal to the prime 13814533.

We can similarly eliminate the possibility of other primes:

p polynomial discriminant
31 T 3 − 61T 2 − 59T − 1 24 · 59 · 71 · 191
29 T 3 − 65T 2 + 61T − 1 25 · 43 · 233
19 T 3 − 66T 2 + 60T − 1 33 · 508847
11 T 3 − 68T 2 + 58T − 1 52 · 13 · 41809

Now we need to handle the primes ≤ 7. The cases p = 2, 3 have already been treated, so
5 and 7 remain.

To eliminate 5 and 7 by constructing cubic polynomials from the tables above will require
over 25 cases. Instead of pursuing this idea further, we show u is not a fifth or seventh power
in Ok by showing it is not such a power in some residue field Ok /p ∼= Fp.

To show u is not a fifth power in some Fp, we want 5 | p − 1, so let’s try p = 11. Since
X3 − 5 has a (single) root 3 mod 11, there is a prime ideal p11 with norm 11. In Ok /p11,

u ≡ ρ5 ≡ ±1⇒ 11 | Nk/Q(u± 1).

Since Nk/Q(u+ 1) = 128 and Nk/Q(u− 1) = 120, u is not a fifth power.

For seventh powers, we want 7 | p − 1. Try p = 29. Since X3 − 5 has a (single) root
−7 mod 29, there is a prime ideal p29 with norm 29, and in its residue field

u ≡ ρ7 ⇒ u2 ≡ ρ14 ≡ ±1.

We already know u2−1 = (u−1)(u+1) has norm not divisible by 29. Since Nk/Q(u2+1) =

23 · 1861, u is not a seventh power. �

Theorem 3. The field k = Q( 3
√

5) has ring of integers Ok = Z[ 3
√

5], class number 1,
discriminant −3352, and unit group ±uZ where u = 41 + 24 3

√
5 + 14 3

√
25. Also 1/u = v =

1 − 4 3
√

5 + 2 3
√

25. The ramified primes 3 and 5 factor as 3 = π3u and 5 = ( 3
√

5)3, where
π = 2− 3

√
5. The minimal polynomials of π and u are respectively

T 3 − 6T 2 + 12T − 3, T 3 − 123T 2 + 3T − 1.
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We now turn to K. The only ramified primes are 3 and 5. Just as in [2], (3) = (η)6 where
η =
√
−3/π, so η2 = −3/π2 = −πu. (In [2], η2 = −πv.) To find the minimal polynomial of

η over Q, we work out the one for η2 = −πu = −(12 + 7 3
√

5 + 4 3
√

25):

Nk/Q(−πu) = −Nk/Q(π) = −3, Trk/Q(−πu) = −36.

The linear coefficient in the minimal polynomial for −πu is

3 Trk/Q(1/πu) = 3 Trk/Q(π2/3) = 12,

so the minimal polynomial for −πu us T 3 + 36T 2 + 12T + 1, hence that for η is

T 6 + 36T 4 + 12T 2 + 3,

so disc(Z[η]) = −263754234.
The discriminant of K/Q can be calculated locally using completions at η and at 3

√
5

(which stays prime in K), but instead we can use [2, Corollary 7]:

disc(K) = disc(F ) disc(k)2 = −3754.

The ring of integers of K is computed by the same technique as in [2], with a similar result:

OK = Ok⊕Ok θ,

where θ = (ω − 1)/π, so η = −ωθ. Since

θθ =
3

π2
= πu = 12 + 7

3
√

5 + 4
3
√

25, θ + θ = − 3

π
= −π2u = −(4 + 2

3
√

5 +
3
√

25),

the minimal polynomial of θ over k is

f(T ) = T 2 + π2uT + πu = T 2 + (4 + 2
3
√

5 +
3
√

25)T + (12 + 7
3
√

5 + 4
3
√

25),

so the minimal polynomial of θ over Q is

fσ(f)σ2(f) = T 6 + 12T 5 + 54T 4 + 72T 3 + 48T 2 + 18T + 3,

where σ ∈ N = Gal(K/F ) is an element of order 3. This polynomial has discriminant
−283754, so Ok 6= Z[θ]. Also OK 6= Z[η].

Now we turn to class number computations. The Minkowski bound for K is

6!

66

(
4

π

)3

5233
√

3 =
2453
√

3

3π3
≈ 37.2.

The factorization statements in [2] for Q( 3
√

2, ω) apply similarly to K = Q( 3
√

5, ω), so the
only possible rational primes that don’t factor principally in K are those p ≡ 1 mod 3
where 5 is a cube mod p, and such primes split completely in K. There is one prime ≤ 37
with these properties, p = 13, so Cl(K) is generated by the prime ideal factors of 13. Since
NK/Q(θ−1) = g(1) = 208 = 24 ·13, there is a principal prime ideal factor of 13, so h(K) = 1.

(For the interested reader, we compute an explicit generator of a prime ideal over 13 by
factoring (θ − 1).

The factorization of 2 is 2OK = pσpσ2p, where p = (3 + 2 3
√

5 + 3
√

25), and f2(K/Q) = 2.
Which of p and its conjugates divides (θ − 1)? All three ideals have quotient F4, so the
cube roots of unity are all distinct in the corresponding residue fields.

In OK /p, 1 + 3
√

25 ≡ 0⇒ 3
√

5 ≡ 1⇒ θ ≡ ω − 1 ≡ ω2 6≡ 1.
In OK /σp, 1 + 3

√
25ω2 ≡ 0⇒ 3

√
5 ≡ ω2 ⇒ θ ≡ (ω − 1)/ω2 ≡ 1.

In OK /σ2p, 1 + 3
√

25ω ≡ 0⇒ 3
√

5 ≡ ω ⇒ θ ≡ (ω − 1)/(−ω) ≡ ω 6≡ 1.
Therefore (θ − 1) = (σp)2P13, where P13 | (13), so P13 is a principal ideal with

β
def
=

θ − 1

(3 + 2 3
√

5ω + 3
√

25ω2)2
= −(9 + 10

3
√

5 + 5
3
√

25 + (1 + 7
3
√

5− 3
√

25)θ)
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as a generator.)
Now we turn to the unit group of OK . Since the ideal (η) is fixed by the Galois group of

K/Q, let’s consider the unit

δ
def
=
σ(η)

η
=

π

σ(π)
∈ O×K ,

where σ ∈ Gal(K/F ) sends 3
√

5 to 3
√

5ω. We have

π = 2− 3
√

5, σ(π) = 2− 3
√

5ω, σ2(π) = 2− 3
√

5ω2 = σ(π).

Therefore
δ =

π

σ(π)
=

π

σ2π
,

so

|δ|2 = δδ =
π2

σ(π)σ2(π)
=
π3

3
= v,

so
v = NK/k(δ), u = NK/k(1/δ).

The log map on O×K is given by

L(x) = (2 log |x|, 2 log |σ(x)|, 2 log |σ2(x)|).
We compute this for x = u, δ, σ(δ), keeping only the first two coordinates.

Since Nk/Q(u) = uσ(u)σ(u) = u|σ(u)|2, 2 log |σ(u)| = 2 log |σ2(u)| = − log u.
Since

σ(δ) =
σ(π)

σ2(π)
, σ2(δ) =

σ2(π)

π
,

we get
2 log |σ(δ)| = 0, 2 log |σ2(δ)| = −2 log |δ| = − log v = log u,

so

L(u) = (2 log u,− log u),

L(σu) = (− log u,− log u),

L(δ) = (− log u, 0),

L(δ) = (− log u, log u),

L(σ(δ)) = (0, log u).

In particular, notice that L(σ(δ)) = L(δ) − L(δ), which means σ(δ) = ζδ/δ, where ζ is a
root of unity in K; in fact σ(δ) = δ/δ. The regulator computations are:

unit pair regulator
u, δ (log u)2

δ, δ (log u)2

u, σ(u) 3(log u)2

By [2, Corollary 7], h(K)R(K) = h(F )R(F )(h(k)R(k))2 = (log u)2, so

[O×K /µK : 〈δ, δ〉] =
Reg(δ, δ)

R(K)
=

(log u)2

R(K)
= h(K).

We already checked h(K) = 1, so {δ, δ} is a pair of fundamental units for K.
To match the notation for fundamental units in [2], let

ε
def
= ω2δ = ω2 π

σ(π)
= −7 + 4

3
√

5 + (7
3
√

5− 12)θ = 1− 4π + (2− 7π)θ.

We know {ε, ε} is a pair of fundamental units. Might OK = Z[ε]? Let’s find the polynomial
for ε over k, and then descend to Q.
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We compute

TrK/k(ε) = ω2 π

σ(π)
+ ω

π

σ2(π)
=
π2

3
(ω2σ2(π) + ωσ(π)) =

π2

3
(−π) = −v.

So ε and ε are both roots of f(T ) = T 2 + vT + v. (This is analogous to the role of the
polynomial T 2 + uT + u in [2].) So the minimal polynomial of ε over Q is

fσ(f)σ2(f) = T 6 + 3T 5 + 126T 4 + 247T 3 + 126T 2 + 3T + 1.

Alas, the discriminant of this is −2123754136, so OK 6= Z[ε]. (As an aside, the polynomial
has symmetric coefficients, so ε−1 is a root, and in fact ε−1 = σ2(ε).)

Theorem 4. The field K = Q( 3
√

5, ω) has class number 1, discriminant −3754, and regu-
lator (log(41 + 24 3

√
5 + 14 3

√
25))2. The ramified primes 3 and 5 factor as

(3) = (η)6, (5) = (
3
√

5)3,

where η =
√
−3/π, π = 2− 3

√
5.

The ring of integers of K is Ok⊕Ok θ, where θ = (ω − 1)/π. The unit group of OK has
six roots of unity, rank 2, and basis {ε, ε}, where

ε = ω2π/σ(π)

has minimal polynomial

g(T ) = T 6 + 3T 5 + 126T 4 + 247T 3 + 126T 2 + 3T + 1.

There is no power basis for OK . For a more general result, see [1].

We now return to the computation of Cl(K). We noted that Cl(K) is generated by
the prime ideal factors of 13, and then showed those factors are principal, using the special
element θ. Here is an alternative computation of h(K) = 1 that does not depend on knowing
about θ.

Let’s assume h(K) 6= 1, i.e. none of the prime ideals over 13 in K is principal. Then the
Galois group of K/Q acts transitively on the nonidentity classes of Cl(K), and we show by
this action that h(K) = 3 if h(K) > 1.

Let P be one prime ideal in K lying over 13. Let τ denote complex conjugation, so
τσ = σ2τ . Since k has class number 1, Pτ(P) ∼ 1. Therefore

σ(P)τ(σ(P)) ∼ 1⇒ σ(P)σ2(τP) ∼ 1⇒ Pσ(τP) ∼ 1.

Therefore τP ∼ σ(τP), so τστ(P) ∼ 1. So [P] ∈ Cl(K) is fixed by τστ = σ2, so its
stabilizer subgroup is either {1, σ, σ2} or G. Thus the number of nonidentity elements in
Cl(K) is 1 or 2, so h(K) = 2 or 3. Since

Pσ(P)σ2(P) = NK/F (P) = (1± 2
√
−3) ∼ 1,

[P]3 = 1, hence 3 | h(K). So if h(K) > 1 then Cl(K) = {1, [P], [τP]} is cyclic of size 3.
We saw earlier that [O×K /µK : 〈δ, δ〉] = h(K). Assume h(K) = 3. We shall apply the

results in [2, Theorem 8] about index 3 sublattices of Z2. In particular, neither L(δ) nor
L(δ) is in 3L, so if the index is 3 then there is a basis {δ, ξ} of O×K /µK , where

δδ = ζξ3 or δ/δ = ζξ3

for some root of unity ζ. Applying NK/k to the first possibility yields v2 = (NK/k(ξ))3 in

O×k , which is absurd since v is a generator of O×k . Applying the log map to the second
possibility yields

L(δ)− L(δ) = −L(σ(δ)) ∈ 3L,
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so by Galois action we have L(δ), L(δ) ∈ 3L, a contradiction of [L(O×K) : L(δ)Z+L(δ)Z] = 3.
Therefore h(K) = 1.

Here’s another point of view on the link between h(K) = 1 and principal factorization of
13OK . Since Nk/Q(2 + 3

√
5) = 13,

(9) 13 = (2 +
3
√

5)(2 +
3
√

5ω)(2 +
3
√

5ω2) = (2 +
3
√

5)(4− 2
3
√

5 +
3
√

25).

We want to factor the second term on the right in Ok. Since Nk/Q(1 + 3
√

25) = 26 and
h(k) = 1, by (2) we must have a numerical factorization

1 +
3
√

25 = (3 + 2
3
√

5 +
3
√

25)(a+ b
3
√

5 + c
3
√

25)

for some a, b, c ∈ Z. Multiplying the two terms on the right we get a solution a = −3, b =
−2, c = 0, i.e. Nk/Q(−3+2 3

√
5) = 13. Guided by (9), we divide −3+2 3

√
5 into 4−2 3

√
5+ 3
√

25

to get the principal (in fact, numerical) factorization of 13 in Z[ 3
√

5]:

(10) 13 = (2 +
3
√

5)(−3 + 2
3
√

5)(2 + 2
3
√

5 +
3
√

25).

So 13 has principal prime factors in OK if and only if the ideal (2 + 3
√

5) of k is the norm
of a principal ideal in K, i.e. there is some α ∈ OK such that

NK/k(α) = ±(2 +
3
√

5)um

for some m ∈ Z. The norm must be positive, so the plus sign must hold. Since u =
NK/k(1/δ), h(K) = 1 if and only if 2 + 3

√
5 is a norm from K.

To explicitly exhibit 2 + 3
√

5 as a norm from K, we consider the generator β of one of
the prime factors of 13OK . Does NK/k(β) = 2 + 3

√
5? No, since NK/k(β) = 342 + 200 3

√
5 +

117 3
√

25, which is much larger than 2 + 3
√

5. By (10), NK/k(β) must equal (2 + 3
√

5)um,

(−3 + 2 3
√

5)um, or (2 + 2 3
√

5 + 3
√

25)um for some integer m. Taking logarithms to check in
each case whether the unknown m is an integer, we find that

NK/k(β) = (2 + 2
3
√

5 +
3
√

25)u.

The prime ideals in OK lying over (2 + 3
√

5) and (2 + 2 3
√

5 + 3
√

25) are conjugate by σ or σ2,
so let’s consider NK/k(σβ). Using PARI, σ(θ) = −4 + 3

√
25− (6− 2 3

√
25)θ, from which we

compute
NK/k(σβ) = σ(β)σ(β) = (2 +

3
√

5)u−2.

Thus

(11) 2 +
3
√

5 = NK/k(σβ)u2 = NK/k((σβ)/δ2).
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