SIMPLE RADICAL EXTENSIONS

KEITH CONRAD

1. INTRODUCTION

A field extension L/K is called simple radical if L = K («) where o™ = a for some n > 1
and ¢ € K*. Examples of simple radical extensions of Q are Q(v/2), Q(+/2), and more
generally Q( (L@) A root of T" — a will be denoted a, so a simple radical extension of K
looks like K ({/a), but the notation {/a in general fields is ambiguous: different nth roots
of a can generate different extensions of K, and they could even be nonisomorphic (e.g.,
have different degrees over K) if T™ — a is reducible in K[T.

Example 1.1. In C the three roots of 7% — 8 are 2, 2w, and 2w?, where w is a nontrivial
cube root of unity; note w? = 1/w and w is a root of (T3 —1)/(T —1) = T?> + T + 1.
While Q(2) = Q, the extension Q(2w) = Q(w) = Q(2/w) has degree 2 over Q, so when
the notation v/8 denotes some root of 73 — 8 over Q then the field Q(+/8) has two different
meanings and R(\?’/g) is Rif /8 =2 and it is C if /8 is 2w or 2w?.

Example 1.2. In the field Q(v/5) the number 2 + /5 is a cube: 2 + /5 = (1+2\/5>3_ The
polynomial 7% — (2 + +/5) factors over Q(v/5) as

T3 — (24 V5) = (T—%) <T2+1+\/5T+3+\/5>

2 2

and the second factor is irreducible over Q(+/5) since it is irreducible over the larger field R
(it is a quadratic with negative discriminant —3(3 4+ +/5)/2). If ¥/2 4+ v/5 means (14 +/5)/2
then Q(v/2 4 v5) = Q((1 ++/5)/2) = Q(V/5), and if v/2+ /5 is a root of the quadratic
factor of T3 — (2 + v/5) above then Q(v/2 + v/5) is a quadratic extension of Q(v/5).

We will focus here on the degree [K({/a) : K] and irreducibility relations for 7" — a
among different values of n, and intermediate fields between K and K ({/a).

2. BASIC PROPERTIES OF T™ —a AND {/a

Theorem 2.1. The degree [K({/a) : K] is at most n, and it equals n if and only if T" — a
is irreducible over K, in which case the field K({/a) up to isomorphism is independent of
the choice of /a.

Proof. Since {/a is a root of T™ — a, which is in K[T], the minimal polynomial of {/a over
K is at most n, and thus [K({/a) : K] < n.

If [K(¥/a) : K] = n then the minimal polynomial of {/a over K has degree n, so it must
be T™ — a since that polynomial has degree n in K[T] with {/a as a root. As a minimal
polynomial in K[T] for some number, 7™ — a is irreducible over K.
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Conversely, assume 7™ — a is irreducible over K. Then {/a has minimal polynomial
T™ —a over K (the minimal polynomial of a number over K is the unique monic irreducible
polynomial in K[T] with that number as a root), so [K({/a) : K| = deg(T" — a) = n.

When T™ — a is irreducible over K, the field K ({/a) is isomorphic to K[T|/(T™ — a) using
evaluation at {/a and thus, up to isomorphism (not up to equality!), the field K({/a) is
independent of the choice of {/a. O

Example 2.2. The polynomial 72 — 2 is irreducible over Q and the three fields Q(\S/i),
Q(Vv/2w), and Q(+v/2w?) are isomorphic to each other, where /2 is the real cube root of 2
(or a cube root of 2 in an arbitrary field of characteristic 0) and w is a nontrivial cube root
of unity. This is no longer true if we replace Q by R, since 72 — 2 has one root in R.

Theorem 2.3. The roots of T" —a in a splitting field over K are numbers of the form { /a
where ¢ is an nth root of unity ((" =1) in K.

Proof. Set o = {/a, which is a fixed choice of root of T" — a over K. If § is another root
in a splitting field of 7" — a over K then " = a = o™, so (B/a)" = 1. Set ( = f/a € K,
50 8 = Ca = ¢ /@ and ¢" = (B/a)" = 1.

Conversely, if (" =1 and ¢ € K then (¢ {/a)” = ("a = a, so {({/a is a root of T" — a in
K. ]

3. PRIME EXPONENTS

In degree greater than 3, lack of roots ordinarily does not imply irreducibility. Consider
(T%—2)(T?-3) in Q[T]. The polynomial T? —a, where the exponent is prime, is a surprising
counterexample: for these polynomials lack of a root is equivalent to irreducibility.

Theorem 3.1. For an arbitrary field K and prime number p, and a € K*, TP — a is
irreducible in K[T] if and only if it has no root in K. Equivalently, TP — a is reducible in
K[T] if and only if it has a root in K.

Proof. Clearly if TP — a is irreducible in K[T'] then it has no root in K (since its degree is
greater than 1).

In order to prove that T? —a not having a root in K implies it is irreducible we will prove
the contrapositive: if TP — a is reducible in K [T then it has a root in K.

Write TP —a = g(T)h(T) in K[T] where m = deg g satisfies 1 <m <p—1. Since TP —a
is monic the leading coefficients of g and h multiply to 1, so by rescaling (which doesn’t
change degrees) we may assume g is monic and thus h is monic.

Let L be a splitting field of TP — a over K and a = ¥/a be one root of TP — a in L. Its
other roots in L are (o where (P =1 (Theorem 2.3), so in L[T]

TP —a= (T = Ga)(T = Ga)--- (T = Ga)

where (¥ = 1. (Possibly ¢; = ¢; when i # j; whether or not this happens doesn’t matter.)
By unique factorization in L[T], every monic factor of TP — a in L[T] is a product of some
number of (7" — (;a)’s. Therefore

(3.1) 9(T) = (T = Gua)(T = Ga) -+ (T = Gy, )

for some pth roots of unity ¢,,...,G,,-
Now let’s look at the constant terms in (3.1). Set ¢ = ¢(0), so

c=(=1)"(Ci, - Gip )™
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Since ¢(T") € K[T], ¢ € K and ¢ # 0 on account of g(0)h(0) = 0P — a = —a. Therefore
(3.2) c=(=1)"(G G )™ € K.

We want to replace o™ with «, and will do this by raising o™ to an additional power to
make the exponent on « congruent to 1 mod p.

Because p is prime and 1 < m < p — 1, m and p are relatively prime: we can write
mx + py = 1 for some x and y in Z. Raise the product in (3.2) to the x-power to make the
exponent on « equal to mx =1 — py:

¢ = ()G, G ) o™
= (1) (G G )P0

Q

mx o . xX «Q
= (_1) (Cll C’Lm) (Oép)y
mx P . xg
= (_]‘) (Cll C%n) ay7
SO
(Ciy -+ i) a=a¥(—1)™c" € K*
and the left side has the form (a where (P = 1, so K contains a root of TP — a. O

Remark 3.2. For an odd prime p and a field K, the irreducibility of T? — a over K implies
irreducibility of TP" — a for all 7 > 1, which is not obvious! And this doesn’t quite work
when p = 2: irreducibility of 7% — a implies irreducibility of 72" — a for all 7 > 2 (again,
not obvious!), but irreducibility of T2 — a need not imply irreducibility of T* — a. A basic
example is that T2 + 4 is irreducible in Q[T] but T* + 4 = (T? + 2T +2)(T? — 2T +2). See
[2, pp. 297-298] for a precise irreducibility criterion for 7" — a over a general field, which
is due to Vahlen [4] in 1895 for K = Q, Capelli [1] in 1897 for K of characteristic 0, and
Rédei [3] in 1959 for positive characteristic.

4. IRREDUCIBILITY RELATIONS AMONG 1™ — @ FOR DIFFERENT EXPONENTS

Theorem 4.1. Let K be a field, a € K*, and assume T" — a is irreducible over K. Ifd | n
then T¢ — a is irreducible over K. Equivalently, if [K(¥/a) : K| =n for some nth root of a
over K then for all d | n we have [K(¥a) : K| = d for every dth root of a.

Proof. We prove irreducibility of T™ — a implies irreducibility of T¢ —a in two ways: working
with polynomials and working with field extensions.

Polynomials: assume 7% — a is reducible over K, so T% — a = g(T)h(T) where 0 <
deg g(T) < d. Replacing T with T"/¢ in this equation, we get T" — a = g(T™/*)h(T™/?)
where deg g(T™/?) = (n/d)deg g < (n/d)d = n and clearly deg g(T™/%) > 0.

Field extensions: let {/a be an nth root of a over K, so [K({/a) : K] = n by Theorem
2.1. Define /a = (L/cin/d. This is a root of T — a since %d = ({l/ﬁn/d)d = /a" =a. To
prove T¢ — a is irreducible over K we will prove [K(/a) : K| = d using that choice of /a.

In the tower K C K(/a) C K({/a), we have [K(/a) : K] < d and [K({/a) : K({/a)] <
n/d by Theorem 2.1, since ¥/a is a root of T? — a € K[T] and {/a is a root of ™% — {a €
K ({/a)|T). We have
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and our irreducibility hypothesis implies the left side is n, so it follows that our upper bounds
n/d and d for the factors on the right must be equalities. In particular, [K(¥a) : K] = d
so T? — @ is irreducible over K (it has a root with degree d over K). O

There was an important calculation in this proof that we will use repeatedly below: if
d | n then K({/a) contains K (/a), where /a := {’/5”/‘1. This is a root of T% — a, so the
notation is reasonable, but note that a is not an arbitrary dth root of a: it depends on
the choice made first of {/a.

By Theorem 4.1 and Remark 3.2, for odd primes p irreducibility of TP — a is equivalent
to irreducibility of T?" — a for a single r > 1, and for the prime 2 irreducibility of T% — a is
equivalent to irreducibility of T?" — a for a single r > 2.

Theorem 4.2. For relatively prime positive integers m and n, T™" — a is irreducible over
K if and only if T™ —a and T™ —a are each irreducible over K. Equivalently, if m andn are
relatively prime positive integers then [K(™/a) : K| = mn if and only if [K(%/a) : K] =m
and [K (¥a) : K] = n.

Proof. That irreducibility of T™" — a over K implies irreducibility of 7™ — a and T" — a
over K follows from Theorem 4.1.

To prove irreducibility of 7™ — a and T™ — a over K implies irreducibility of T™" — a
over K we will work with roots of these polynomials. It is convenient to select mth, nth,
and mnth roots of a in a multiplicatively compatible way: fix a root ™/a of T™" — a over
K and define /a := "™/a" and {/a:= "™/a"". Then %/a is a root of T™ — a and {/a is a
root of T™ — a, so we have the following field diagram, where the containments are due to

?/a and {/a being powers of "/a.

The bottom field degree values come from 7" —a and T" —a being irreducible over K, and
the top field degree upper bounds come from ™/a being a root of 7" — /a € K(%/a)[T] and
T™ — a € K({/a)[T). Let d = [K(™/a) : K], so by reading the field diagram along either
the left or right we have . Also d is divisible by m and by n since field degrees are
multiplicative in towers, so from relative primality of m and n we get m | d,n | d = mn | d,
S0 . Thus d = mn, so T™" — a is the minimal polynomial of ™a over K and thus
is irreducible over K. O

Corollary 4.3. For an integer N > 1 with prime factorization p{* - - - p}*, TN — a is irre-
ducible over K if and only if each TP — a is irreducible over K.

Proof. Use Theorem 4.2 with the factorization N = p{*(p§? - - - pi*) to see irreducibility of
TN — a over K is equivalent to irreducibility of TP — g and TP2 P — q over K , and
then by induction on the number of different prime powers in the degree, irreducibility of
P3P g over K is equivalent to irreducibility of T P’ — g over K for i = 2,...,k. O
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Example 4.4. Irreducibility of 79° — a over K is equivalent to irreducibility of T2 — a,
T —a, and T° — a over K.

Remark 4.5. By Remark 3.2, if N is odd then irreducibility of TV —a over K is equivalent
to irreducibility of TP — a over K as p; runs over the prime factors of N (the multiplicities
e; don’t matter!), and for these we know the story for irreducibility by Theorem 3.1: it’s
the same thing as T?¢ — a not having a root in K for each p;.

Example 4.6. Irreducibility of 77 — a over K is equivalent to a not having a cube root
or fifth root in K.

5. INTERMEDIATE FIELDS IN A SIMPLE RADICAL EXTENSION

For a choice of nth root {/a and a factor d | n, Ja := {‘/5”/‘1 is a root of T% — a in
K ({/a), so we have the following field diagram.

It’s natural to ask if every field between K and K ({/a) is K ({/a) for some d dividing n.
The simplest setting to study this is when 7™ — a is irreducible over K (and thus also 7% —a
is irreducible over K, by Theorem 4.1), so [K(¢/a) : K| = d. Is K({/a) the only extension
of K of degree d inside K ({/a)? This is not always true.

Example 5.1. Let K = Q and consider the field Q(v/—1). Set a = v/—1, so at+1=0.
The polynomial T* + 1 is irreducible over Q because it becomes Eisenstein at 2 when T is
replaced with 7'+ 1. Since [Q(v/—1) : Q] = 4, the fields strictly between Q and Q(v/—1)
are quadratic over Q. One of these is Q(v/—1), but it is not the only one.

Q(v-1)

PN
Q(ﬁ)\Q(Fl)/Q(ﬁ
Q

If a* = —1 then (a +1/a)> = a? +2+1/a® = (a* +1)/a? +2 =2 and (a — 1/a)? =
a?—2+1/a? = (a*+1)/a? -2 = -2, s0 Q(v/—1) contains Q(v/2) and Q(v/—2). None of
the fields Q(i), Q(v/2), and Q(y/—2) are the same, so we have at least three (and in fact
there are just these three) quadratic extensions of Q in Q(v/—1).

)

In the above example, the “reason” for the appearance of more intermediate fields between
Q and Q(+v/—1) than just Q(v/—1) is that there are 4th roots of unity in Q(v/—1) that are
not in Q, namely £v/—1. The following theorem shows we get no such unexpected fields if
all nth roots of unity in the top field are actually in the base field.
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Theorem 5.2. Let K be a field, a € K*, and assume T™ — a is irreducible over K. If
all nth roots of unity in K({/a) are in K then for each d | n the only field between K and

K({/a) of degree d over K is K(¥/a), where {/a := C/ﬁn/d.

Proof. Every field between K and K ({/a) has degree over K that divides n. For d | n
suppose L is a field with K € L C K({/a) and [L : K] = d. To prove L = K(/a), it
suffices to show ¥a € L, since that would give us K(¥a) C L and we know K({/a) has
degree d over K, so the containment K (/a) C L would have to be an equality.

K({/a)

n/d

L
d

K

Let f(T) be the minimal polynomial of {/a over L, so f(T) | (T" —a) and deg f = n/d.
We can write another root of f(T') as ¢ {/a for some nth root of unity (. (Theorem 2.3).
In a splitting field of 7™ — a over K, the factorization of f(T') is [[;c;(T — ¢;{/a) for
some nth roots of unity ¢; (I is just an index set). The constant term of f(7') is in L, so

(Ies G) W/a™® e L. Therefore ([T,e;¢) W/a™® € K(3/a), so [[,e; & € K(/a). The only
nth roots of unity in K({/a) are, by hypothesis, in K, so [[,c;& € K C L. Therefore

d ..
%”/ = Wa is in L, so we're done. O

Example 5.3. If K = Q, a > 0, and T" —a is irreducible over Q then Q({/a) is isomorphic
to a subfield of R (using the real positive nth root of a), which implies the only roots of
unity in Q({/a) are 1 and those both lie Q. For example, the only fields between Q and

Q({/2) are Q(v/2) where d | n and v/2 = {l/in/d.

Example 5.4. Let F be a field and K = F(u), the rational functions over F in one
indeterminate. The polynomial 7" — w is irreducible over F'(u) since it is Eisenstein at u.
We let {/u denote one root of T" — u, so K({/u) = F({/u) has degree n over F(u). All
roots of unity in F({/u) — not just nth roots of unity — are in F', because F({/u) is itself
a rational function field in one indeterminate over F' (since {/u is transcendental over F')
and all elements of a rational function field in one indeterminate over F' that are not in F
are transcendental over F' and thus can’t be a root of unity. Therefore by Theorem 5.2, the
fields between F'(u) and F({/u) are F'(/u) for d | n.

Example 5.5. An example where the hypothesis that all nth roots of unity in K ({/a) are
in K is false, yet the conclusion of Theorem 5.2 is true, is K = Q(i), a = 2, and n = 8: it
can be shown that [Q(i, v/2) : Q(7)] = 8 and the only fields between Q(i) and Q(i, v/2) are

Q(i, /2) for d = 1,2,4,8 while % is an 8th root of unity in Q(v/2,4) that is not in Q().
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